In questa pagina imparerai cosa sono le equazioni di matrice e come risolverle. Inoltre, troverai esempi ed esercizi risolti di equazioni con matrici.
Cosa sono le equazioni di matrice?
Le equazioni di matrice sono come le normali equazioni, ma invece di essere composte da numeri, sono costituite da matrici. Per esempio:
![]()
Pertanto anche la soluzione X sarà una matrice.
Come già sai, le matrici non possono essere divise. Pertanto, la matrice X non può essere cancellata dividendo la matrice che l’ha moltiplicata dall’altro lato dell’equazione:
![]()
Per cancellare invece la matrice X occorre seguire tutta una procedura. Vediamo quindi come risolvere le equazioni di matrice con un esercizio risolto:
Come risolvere le equazioni di matrice. Esempio:
- Risolvi la seguente equazione di matrice:
![]()
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9727c78818a9661573310f22ec2fb3cf_l3.png)
La prima cosa che dobbiamo fare è risolvere la matrice X. Quindi sottraiamo la matrice B dall’altro lato dell’equazione:
![]()
![]()
Per completare la pulizia, la matrice non può essere divisa. Ma dobbiamo fare quanto segue:
Dobbiamo moltiplicare entrambi i lati dell’equazione per l’ inverso della matrice che moltiplica la matrice X e, inoltre, moltiplicare entrambi i lati per il lato in cui si trova detta matrice.
In questo caso, la matrice che moltiplica X è A, e si trova alla sua sinistra. Moltiplichiamo quindi per sinistra entrambi i membri dell’equazione per l’inverso di A (A -1 ):
![]()
![]()
Una matrice moltiplicata per il suo inverso è uguale alla matrice identità. Ancora
![]()
![]()
Qualsiasi matrice moltiplicata per la matrice identità dà la stessa matrice. Ancora:
![]()
E in questo modo abbiamo già cancellato X. Adesso basta fare le operazioni con le matrici. Quindi calcoliamo prima la matrice inversa 2 × 2 di A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b79c0ae6349ac5ac0267e179e641b66e_l3.png)
![]()
Calcoliamo l’aggiunto della matrice A:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1eb7c7a828453c5310d59386f0303b83_l3.png)
E una volta trovata la matrice aggiunta, si procede a calcolare la matrice trasposta per determinare la matrice inversa:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aa12c355319a6894e76343c9cb9185d3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a2fd06e0ad4a2a18560f644b718dadf4_l3.png)
Ora sostituiamo tutte le matrici nell’espressione per calcolare X:
![]()
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-99716e9accb7ee578fb1119d4e800e4f_l3.png)
E procediamo a risolvere le operazioni con le matrici. Per prima cosa calcoliamo le parentesi sottraendo le matrici:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d07c28ad6104e391605836ecdd297251_l3.png)
E, infine, moltiplichiamo le matrici:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b28076f6ab18dc77a0083388046c5cd1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7d20e85150a382ba9f11bf328b866834_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3e7ebae094a92690d97b614b0487a4_l3.png)
Problemi risolti con le equazioni della matrice
Affinché tu possa esercitarti e quindi comprendere bene il concetto, ti lasciamo di seguito diverse equazioni di matrice risolte. Puoi provare a fare gli esercizi e vedere se hai avuto successo con le soluzioni. Non dimenticare che puoi anche farci tutte le domande che sorgono nei commenti.
Esercizio 1
Essere
![]()
E
![]()
le seguenti matrici quadrate di dimensione 2×2:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f40b96fc0f1047fb0c39a7d41be04ea_l3.png)
Calcola la matrice
![]()
che soddisfa la seguente equazione di matrice:
![]()
È necessario prima svuotare la matrice
![]()
dell’equazione della matrice:
![]()
![]()
![]()
![]()
Una volta ottenuta la matrice
![]()
chiaro, basta operare con le matrici. Calcoliamo quindi prima la matrice inversa di A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2fb5c4785b78010fcac56e1189338b99_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7c4d4a6bfca6d2eedde52937c8ee0917_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-695a05e4176ced4a4beaec27ce201b4a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a12ae8d0ae9ce16f04540ecd1a0ac907_l3.png)
Ora sostituiamo tutte le matrici nell’equazione per calcolare la matrice
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-92d5f580fddfc830181cde2e67013987_l3.png)
E, infine, facciamo la moltiplicazione delle matrici:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-787643b41cb362e276b8f80c9211fb52_l3.png)
Esercizio 2
Essere
![]()
,
![]()
E
![]()
le seguenti matrici di ordine 2:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f4f1f244d15039c64282a9fe347cee4_l3.png)
Calcola la matrice
![]()
che soddisfa la seguente equazione di matrice:
![]()
La prima cosa che dobbiamo fare è svuotare la matrice.
![]()
dell’equazione della matrice:
![]()
![]()
![]()
![]()
![]()
Una volta isolata la matrice
![]()
, è necessario operare con matrici. Calcoliamo quindi prima la matrice inversa di B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-33c4a446ecdc391935728843e6a34964_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4850852b0e29a3d530b32dc1cd635499_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8817da5e89bc39e89bd17390cfd61c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a5fc342354f6410cb87fa6b0ddf833a4_l3.png)
Ora sostituiamo tutte le matrici nell’equazione per calcolare la matrice
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-79abf2abf8a29e6357f65a1b62c9a80f_l3.png)
Risolviamo le parentesi sottraendo le matrici:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f5141a4cb61be8db15676e185b10767f_l3.png)
E, infine, moltiplichiamo le matrici:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1d5482b1eb8fd6af1d6c61547b05c0bc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-779a021183e139f0e138fbc288d4adea_l3.png)
Esercizio 3
Essere
![]()
,
![]()
E
![]()
le seguenti matrici del secondo ordine:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6292882d305055e4e8fb287a4bc93b71_l3.png)
trova la matrice
![]()
che soddisfa la seguente equazione di matrice:
![]()
Per prima cosa dobbiamo cancellare la matrice
![]()
dell’equazione della matrice:
![]()
![]()
![]()
![]()
Una volta svuotata la matrice
![]()
, è necessario operare con matrici. Calcoliamo quindi prima la matrice inversa di A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b09ce42998b548267e70e47b135b6508_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2a29b310de613bc1ec42a6e1452db147_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c0e0b895fed20ba908417f6ee3482ce0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c19685457cd40098cadf6eeff41405d5_l3.png)
E invertiamo anche la matrice B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d3f5048394796b2378c8197c9c9c1cb7_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-261eb432e305f5df596fc1dff9f183d7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-96d40ae8aa7c350c8a63d57d06b6fa6d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-80ee47f61b0671b42f9df06e7f384847_l3.png)
Ora sostituiamo tutte le matrici nell’espressione per calcolare la matrice
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-de94e47503b17f761f7fcb764f4def59_l3.png)
Risolviamo prima la moltiplicazione a sinistra
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ca95f4870d5be13a3f7e241e5a40934b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3df7709b9d5c5f5194744d4c88d2cb66_l3.png)
E, infine, eseguiamo la moltiplicazione rimanente:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d83b02b8768a7e95ee71b7782d7759_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4b3a393915b3c49bdf9dd9ee6ada5020_l3.png)
Esercizio 4
Essere
![]()
E
![]()
le seguenti matrici di dimensione 3×3:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da8b3d05ecc85eea72fd7d14c282f58c_l3.png)
Calcola la matrice
![]()
che soddisfa la seguente equazione di matrice:
![]()
Per prima cosa cancelliamo la matrice
![]()
dell’equazione della matrice:
![]()
![]()
![]()
![]()
![]()
![]()
Una volta isolata la matrice
![]()
, è necessario operare con matrici. Calcoliamo quindi prima la matrice inversa di A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1a92fa898838b531bf1b51356dbbb2de_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\ -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 1\\ 0 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9cc1a5bb552d5eadacef8677265cba0a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1 & 0 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e668ed3a6e233bed8245f99e80638633_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1 & -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeb999734b9ba4b6e9a01e788bee6649_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f8f2379d6d616b29b78005aaafe39f29_l3.png)
Ora sostituiamo tutte le matrici nell’espressione per calcolare X:
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-c91b944756316c7cde33eb90743d54d6_l3.png)
Trasponiamo la matrice B:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-3a81f0c3d7367d756d53221e9c56d1e3_l3.png)
Risolviamo le parentesi sottraendo le matrici:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5f822e84288230368a5c0918c79398bf_l3.png)
E infine, eseguiamo la moltiplicazione delle matrici:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3} & \bm{-6} & \bm{9} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-552e3809229102041ddf02a78badfea0_l3.png)