Dans cette section, nous verrons ce qu’ils sont et comment calculer un mineur complémentaire, un adjoint et la matrice adjointe . De plus, vous trouverez des exemples, pour que vous compreniez parfaitement, et des exercices résolus étape par étape, pour que vous puissiez vous entraîner.
Qu’est-ce que la mineure complémentaire ?
On l’appelle le mineur complémentaire d’un élément.
au déterminant obtenu en supprimant la ligne
et la colonne
d’une matrice.
Comment calculer le mineur complémentaire d’un élément ?
Voyons comment le mineur complémentaire d’un élément est calculé à l’aide de quelques exemples :
Exemple 1:
Calculez le mineur complémentaire de 1 de la matrice carrée 3 × 3 suivante :
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
Le mineur complémentaire de 1 est le déterminant de la matrice qui reste lors de l’élimination de la ligne et de la colonne où se trouve le 1. C’est-à-dire en supprimant la première ligne et la deuxième colonne :
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} \cellcolor[HTML]{F5B7B1}6 & \cellcolor[HTML]{F5B7B1}1 & \cellcolor[HTML]{F5B7B1}7 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 3 & \cellcolor[HTML]{F5B7B1}2 & 0 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 5 & \cellcolor[HTML]{F5B7B1}8 & 4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-cb0021e61d4a3779378734771071bdfa_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 1} = \begin{vmatrix} 3 & 0 \\[1.1ex] 5 & 4 \end{vmatrix} = \bm{12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7a38c134fa8e592ff15956701ce4521c_l3.png)
Exemple 2 :
Cette fois nous allons calculer le mineur complémentaire de 0 de la même matrice que précédemment :
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
Le mineur complémentaire de 0 est le déterminant de la matrice en supprimant la ligne et la colonne où le 0 est :
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} 6 & 1 & \cellcolor[HTML]{F5B7B1}7 \\ & & \cellcolor[HTML]{F5B7B1} \\[-2ex] \cellcolor[HTML]{F5B7B1} 3 & \cellcolor[HTML]{F5B7B1}2 & \cellcolor[HTML]{F5B7B1}0 \\ & &\cellcolor[HTML]{F5B7B1} \\[-2ex] 5 & 8 & \cellcolor[HTML]{F5B7B1}4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeeb42496216ad8689d1a70807b56644_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 0} = \begin{vmatrix} 6 & 1 \\[1.1ex] 5 & 8 \end{vmatrix} = \bm{43}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bd1eff11f2081d56b20c97203fc053c0_l3.png)
Exercices résolus des mineurs complémentaires
Exercice 1
Calculez le plus petit complémentaire de 3 de la matrice 3×3 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 5 & 1 & 2 \\[1.1ex] 3 & 4 & 7 \\[1.1ex] -1 & 6 & 7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-16dac836fa9d63465e46dd35e2f36249_l3.png)
Le mineur complémentaire de 3 est le déterminant de la matrice qui reste après suppression de la ligne et de la colonne où le 3 est :
![Rendered by QuickLaTeX.com \text{Menor complementario de 3} = \begin{vmatrix} 1 & 2 \\[1.1ex] 6 & 7 \end{vmatrix} = \bm{-5}](https://mathority.org/wp-content/ql-cache/quicklatex.com-23b957e07aa004db36332997e906169f_l3.png)
Exercice 2
Trouver la mineure complémentaire de 5 de la matrice d’ordre 3 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2 & 4 & -2 \\[1.1ex] 1 & 3 & 4 \\[1.1ex] 5 & 8 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-870e864969258f55a07ecd82c68c3132_l3.png)
Le mineur complémentaire de 5 est le déterminant de la matrice que l’on obtient en supprimant la ligne et la colonne où le 5 est :
![Rendered by QuickLaTeX.com \text{Menor complementario de 5} = \begin{vmatrix} 4 & -2 \\[1.1ex] 3 & 4 \end{vmatrix} = \bm{22}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f9fc980c8adf2b46e6bcfea0ef69737a_l3.png)
Exercice 3
Calculez le mineur complémentaire de 6 de la matrice 4×4 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 1 & 3 & 4 \\[1.1ex] 2 & 6 & -1 & 8 \\[1.1ex] 3 & 9 & -1 & 4 \\[1.1ex] 5 & 4 & 1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c61e20d710e35ab2b27c94ca720e01a9_l3.png)
La mineure complémentaire de 6 est le déterminant de la matrice qui reste après suppression de la ligne et de la colonne où le 6 est :
![Rendered by QuickLaTeX.com \text{Menor complementario de 6} = \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5& 1 & 3 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-60150a09c3023b5f1e147bf437df719c_l3.png)
On résout le déterminant avec la règle de Sarrus :
![Rendered by QuickLaTeX.com \displaystyle \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5 & 1 & 3 \end{vmatrix}=-3+60+12+20-4-27 = \bm{58}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f331c9c3723df34235d8f172f5f41750_l3.png)
Qu’est-ce que l’adjoint d’un élément d’un tableau ?
L’ adjoint de
, c’est-à-dire de l’élément de ligne
et de la colonne
, s’obtient avec la formule suivante :
![]()
Comment obtenir l’adjoint d’un élément d’un tableau ?
Voyons comment se calcule l’adjoint d’un élément à travers plusieurs exemples :
Exemple 1:
Calculer l’ adjoint de 4 de la matrice d’ordre 3 suivante :
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
Le 4 est en ligne 2 et en colonne 1 , donc, dans ce cas
et![]()
![]()
Et, comme nous l’avons vu précédemment, le mineur complémentaire de 4 est le déterminant de la matrice, éliminant la ligne et la colonne où se trouve le 4. Par conséquent :
![Rendered by QuickLaTeX.com \text{Adjunto de} 4 = \displaystyle(-1)^{2+1} \bm{\cdot} \begin{vmatrix} 2 & 3 \\[1.1ex] 8 & 9 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b1cdd0dac0607a955fcfb19849c05276_l3.png)
Maintenant, nous résolvons le déterminant et trouvons l’adjoint de 4 :
![]()
Rappelez-vous qu’un nombre négatif élevé à un exposant pair est positif. Par conséquent, si le -1 est élevé à un nombre pair, il deviendra positif.
![]()
En revanche, si un nombre négatif est élevé à un exposant impair, il est négatif. Par conséquent, si le -1 est élevé à un nombre impair, il sera toujours négatif.
![]()
Exemple 2 :
On va trouver l’ adjoint de 5 de la même matrice que précédemment :
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 5 = \displaystyle(-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 7 & 9 \end{vmatrix} = 1 \cdot (-12) = \bm{-12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f3e47d30b12e053b3f5950033640b662_l3.png)
Exemple 3 :
Faisons l’ adjoint de 3 de la même matrice :
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 3 \displaystyle = (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 4 & 5 \\[1.1ex] 7 & 8 \end{vmatrix} = 1 \cdot (-3) = \bm{-3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-954d6137c753a58e91682334addc5345_l3.png)
L’adjoint d’un élément sert à calculer des déterminants, comme nous le verrons plus loin, et à calculer la matrice adjointe, c’est ce que nous allons voir maintenant.
Exercices résolus des adjoints
Exercice 1
Calculez l’adjoint de 2 de la matrice 3×3 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 & 1 \\[1.1ex] -1 & -3 & 5 \\[1.1ex] 5 & 3 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-340d5ef9265b33c7a6ad4ac7d72633f5_l3.png)
Pour obtenir le résultat de l’adjoint de 2 il suffit d’appliquer la formule de l’adjoint d’un élément :
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 2} \displaystyle = (-1)^{1+1} \bm{\cdot} \begin{vmatrix} -3 & 5 \\[1.1ex] 3 & 1 \end{vmatrix} = 1 \cdot (-18) = \bm{-18}](https://mathority.org/wp-content/ql-cache/quicklatex.com-74e69b36278f7b0518a20be2e02aea4c_l3.png)
Exercice 2
Trouver l’adjoint de 4 de la matrice d’ordre 3 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 3 & 1 & -1 \\[1.1ex] 2 & 9 & 4 \\[1.1ex] 6 & 5 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e21733cd834cdbeed5ca8fc433068ccf_l3.png)
Pour obtenir l’adjoint de 4, nous devons utiliser la formule de l’adjoint d’un élément :
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 4} \displaystyle = (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 3 & 1 \\[1.1ex] 6 & 5 \end{vmatrix} = -1 \cdot 9 = \bm{-9}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c4a2228588aeef08594e7f3cc93c53ec_l3.png)
Exercice 3
Trouver l’adjoint de 7 de la matrice 4×4 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 & 5 & -2 \\[1.1ex] 3 & 1 & -3 & 3 \\[1.1ex] 2 & -1 & 4 & 0 \\[1.1ex] 2 & 7 & 9 & -4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-64b3cf6b9f34fce5f66d24502f2434a1_l3.png)
Pour faire l’adjoint de 7 on applique la formule de l’adjoint d’un élément :
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 7} \displaystyle = (-1)^{4+2} \bm{\cdot} \begin{vmatrix} 1 & 5 & -2 \\[1.1ex] 3 & -3 & 3 \\[1.1ex] 2 & 4 & 0\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-54f5200bb9a57df8b0aa73271ec26c7f_l3.png)
Nous appliquons la règle de Sarrus pour résoudre le déterminant du troisième ordre :
![]()
![]()
Quelle est la matrice jointe ?
Le tableau attaché est un tableau dans lequel tous ses éléments ont été remplacés par leurs adjoints.
Comment calculer la matrice adjointe ?
Pour calculer la matrice adjointe , nous devons substituer tous les éléments de la matrice à leurs adjoints.
Voyons comment la matrice jointe est faite à travers un exemple :
Exemple:
Calculer la matrice adjointe de la matrice carrée suivante de dimension 2×2 :
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 4 & -1 \\[1.1ex] 3 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e1d84d025062b24cb6a7ef021cb55de1_l3.png)
Pour calculer la matrice adjointe, il faut calculer l’adjoint de chaque élément de la matrice . Par conséquent, nous allons d’abord résoudre les adjoints de tous les éléments avec la formule :
![]()
![]()
![]()
![]()
![]()
Maintenant, nous devons simplement substituer chaque élément du tableau
par son adjoint pour trouver la matrice adjointe de ![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{2} & \bm{-3} \\[1.1ex] \bm{1} & \bm{4} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4c4c2583218c84e184a1911972dca72b_l3.png)
Et de cette façon l’adjoint d’une matrice est trouvé. Mais vous vous demandez sûrement à quoi servent tous ces calculs ? Eh bien, l’un des utilitaires de la matrice jointe est de calculer l’ inverse d’une matrice . En fait, la méthode la plus courante pour trouver la matrice inverse est la méthode de la matrice adjointe.
Problèmes résolus de matrice adjointe
Exercice 1
Calculez la matrice adjointe de la matrice carrée 2×2 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 \\[1.1ex] -4 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b5fbfc1c22345724f35d7208214f8592_l3.png)
Pour calculer la matrice adjointe, il faut calculer l’adjoint de chaque élément de la matrice. Par conséquent, nous allons d’abord résoudre les adjoints de tous les éléments avec la formule :
![]()
![]()
![]()
![]()
Maintenant, nous devons simplement substituer chaque élément du tableau
par son adjoint pour trouver la matrice adjointe de ![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{1} & \bm{4} \\[1.1ex] \bm{-3} & \bm{2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3fdee2506136365c141a81596f1d22_l3.png)
Exercice 2
Trouver la matrice adjointe de la matrice du second ordre suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 6 & -2 \\[1.1ex] 3 & -7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b95133fbf999cb6585b3a32f4b1b906b_l3.png)
Pour calculer la matrice adjointe, il faut calculer l’adjoint de chaque élément de la matrice. Par conséquent, nous allons d’abord résoudre les adjoints de tous les éléments avec la formule :
![]()
![]()
![]()
![]()
Maintenant, nous devons simplement substituer chaque élément du tableau
par son adjoint pour trouver la matrice adjointe de ![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-7} & \bm{-3} \\[1.1ex] \bm{2} & \bm{6} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-604112d6e7d95ca76dd5266dc2eceb86_l3.png)
Exercice 3
Calculez la matrice adjointe de la matrice 3×3 suivante :
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 3 & -1 \\[1.1ex] 2 & 4 & 0 \\[1.1ex] 5 & 0 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0072b68810f2662ae9f4ec3d11902f97_l3.png)
Pour calculer la matrice adjointe, il faut calculer l’adjoint de chaque élément de la matrice. Par conséquent, nous allons d’abord résoudre les adjoints de tous les éléments avec la formule :
![Rendered by QuickLaTeX.com \text{Adjunto de 1} = \displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 4 & 0 \\[1.1ex] 0 & -2\end{vmatrix} = 1 \cdot (-8) = \bm{-8}](https://mathority.org/wp-content/ql-cache/quicklatex.com-68e2bee7e07b5749033cdf67d90684a6_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 3} = \displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 2 & 0 \\[1.1ex] 5 & -2\end{vmatrix} = -1 \cdot (-4) = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-88120e3a6fa0e6ba43c654ce7884eb41_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -1} = \displaystyle (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 2 & 4 \\[1.1ex] 5 & 0\end{vmatrix} = 1 \cdot (-20) = \bm{-20}](https://mathority.org/wp-content/ql-cache/quicklatex.com-49c170f202956d9571fcce88cd389889_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 2} = \displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 0 & -2\end{vmatrix} = -1 \cdot (-6) = \bm{6}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9dd9f81ddb6bd58f2a4e1241c3fbfdb3_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 4} = \displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 5 & -2\end{vmatrix} = 1 \cdot 3 = \bm{3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ee11d10a5ef1719e3eee0d1de8e2fd1e_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 5 & 0 \end{vmatrix} = -1 \cdot (-15) = \bm{15}](https://mathority.org/wp-content/ql-cache/quicklatex.com-327cba2dd78055703b66b887083d3a50_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 5} = \displaystyle (-1)^{3+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 4 & 0 \end{vmatrix} = 1 \cdot 4 = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d5df97c790e24f1257c7d1073c4e2af8_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{3+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 2 & 0\end{vmatrix} = -1 \cdot 2 = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0d0cd9b3ea07312942362d52f07c04bc_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -2} = \displaystyle (-1)^{3+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 2 & 4 \end{vmatrix} = 1 \cdot (-2) = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-00f3983f64257be282584209b8f2d842_l3.png)
Maintenant, nous devons simplement substituer chaque élément du tableau
par son adjoint pour trouver la matrice adjointe de ![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-8} & \bm{4} & \bm{-20} \\[1.1ex] \bm{6} & \bm{3} & \bm{15} \\[1.1ex] \bm{4} & \bm{-2} & \bm{-2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-01e49ffda72034d74b18ecdd37d1e3b6_l3.png)