Matris denklemleri

Bu sayfada matris denklemlerinin ne olduğunu ve nasıl çözüleceğini öğreneceksiniz. Ayrıca matrislerle denklemlerin örneklerini ve çözülmüş alıştırmalarını bulacaksınız.

Matris denklemleri nelerdir?

Matris denklemleri normal denklemler gibidir ancak sayılardan oluşmak yerine matrislerden oluşur. Örneğin:

\displaystyle  AX=B

Bu nedenle X çözümü de bir matris olacaktır.

Bildiğiniz gibi matrisler bölünemez. Bu nedenle, X matrisi, onu çarpan matrisin denklemin diğer tarafına bölünmesiyle temizlenemez:

\renewcommand{\CancelColor}{\color{red}}  \xcancel{X =\cfrac{B}{A}}

Aksine X matrisini temizlemek için bütün bir prosedürün izlenmesi gerekir. Şimdi çözülmüş bir alıştırmayla matris denklemlerini nasıl çözeceğimizi görelim:

Matris denklemleri nasıl çözülür? Örnek:

  • Aşağıdaki matris denklemini çözün:

\displaystyle  AX+B = C

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}

Yapmamız gereken ilk şey X matrisini bulmak. Yani B matrisini denklemin diğer tarafından çıkarıyoruz :

\displaystyle  AX+B = C

\displaystyle  AX = C-B

Temizleme matrisini bitirmek için bölünemez. Ancak şunları yapmalıyız:

Denklemin her iki tarafını da X matrisini çarpan matrisin tersiyle çarpmamız ve ayrıca her iki tarafı da söz konusu matrisin bulunduğu tarafla çarpmamız gerekiyor.

Bu durumda X’i çarpan matris A’dır ve onun solundadır. Bu nedenle denklemin sol taraflarını A’nın tersiyle (A -1 ) çarpıyoruz:

\displaystyle  AX = C-B

\displaystyle  \definecolor{vermell}{HTML}{F44336} \color{vermell}\bm{A^{-1}} \color{black} \cdot AX =  \color{vermell}\bm{A^{-1}} \color{black}  \cdot (C-B)

Bir matrisin tersiyle çarpımı birim matrise eşittir. Henüz

\bm{A^{-1} \cdot A = I }:

\displaystyle  IX = A^{-1} \cdot (C-B)

Herhangi bir matris birim matrisle çarpıldığında aynı matrisi verir. Henüz:

\displaystyle  X = A^{-1} \cdot (C-B)

Ve bu şekilde zaten X’i sildik. Şimdi sadece matris işlemlerini yapın. Dolayısıyla ilk önce A’nın 2 × 2 ters matrisini hesaplıyoruz:

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

A matrisinin ekini hesaplıyoruz:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}

Ve ek matris bulunduğunda, ters matrisi belirlemek için aktarılan matrisi hesaplamaya devam ederiz:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}

Şimdi X’i hesaplamak için tüm matrisleri ifadenin yerine koyuyoruz:

\displaystyle  X = A^{-1} \cdot (C-B)

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)

Ve işlemleri matrislerle çözmeye devam ediyoruz. Önce matrisleri çıkararak parantezleri hesaplıyoruz:

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}

Ve son olarak matrisleri çarpıyoruz:

\displaystyle  X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}

\displaystyle  X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}

\displaystyle  \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}

Çözülmüş Matris Denklem Problemleri

Kavramı iyi bir şekilde uygulayabilmeniz ve anlayabilmeniz için, sizi birkaç çözülmüş matris denklemi altında bırakıyoruz. Alıştırmaları yapmayı deneyebilir ve çözümlerde başarılı olup olmadığınızı görebilirsiniz. Aklınıza takılan her türlü soruyu bize yorumlarda sorabileceğinizi de unutmayın.

1. Egzersiz

Olmak

\displaystyle A

Ve

\displaystyle B

2×2 boyutunda aşağıdaki kare matrisler:

\displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Matrisin hesaplanması

X

aşağıdaki matris denklemini karşılar:

\displaystyle AX=B

Önce matrisi boşaltmanız gerekir

X

matris denkleminin:

\displaystyle AX=B

\displaystyle A^{-1} \cdot AX=A^{-1} \cdot B

\displaystyle IX=A^{-1} \cdot B

\displaystyle X=A^{-1} \cdot B

Matrise sahip olduğumuzda

X

açık, sadece matrislerle çalışın. Bu nedenle ilk önce A’nın ters matrisini hesaplıyoruz:

\displaystyle  A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}

Şimdi matrisi hesaplamak için denklemdeki tüm matrisleri yerine koyuyoruz

X :

\displaystyle X=A^{-1} \cdot B

\displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Ve son olarak matrislerin çarpımını yapıyoruz:

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}

Alıştırma 2

Olmak

\displaystyle A

,

\displaystyle B

Ve

\displaystyle C

aşağıdaki sıradaki 2 matris:

\displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}

Matrisin hesaplanması

X

aşağıdaki matris denklemini karşılar:

\displaystyle A+ XB=C

Yapmamız gereken ilk şey matrisi boşaltmak.

X

matris denkleminin:

\displaystyle A+ XB=C

\displaystyle  XB=C-A

\displaystyle XB \cdot B^{-1}=\left(C-A\right)\cdot B^{-1}

\displaystyle XI=\left(C-A\right)\cdot B^{-1}

\displaystyle X = \left(C-A\right)\cdot B^{-1}

Matrisi izole ettikten sonra

X

matrislerle işlem yapmak gerekir. Bu nedenle ilk önce B’nin ters matrisini hesaplıyoruz:

\displaystyle  B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Şimdi matrisi hesaplamak için denklemdeki tüm matrisleri yerine koyuyoruz

X :

\displaystyle X=\left(C-A\right)\cdot B^{-1}

\displaystyle  X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Matrisleri çıkararak parantezleri çözeriz:

\displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Ve son olarak matrisleri çarpıyoruz:

\displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}

Alıştırma 3

Olmak

\displaystyle A

,

\displaystyle B

Ve

\displaystyle C

aşağıdaki ikinci dereceden matrisler:

\displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}

matrisi bul

X

aşağıdaki matris denklemini karşılar:

\displaystyle AXB=C

İlk önce matrisi temizlememiz gerekiyor

X

matris denkleminin:

\displaystyle AXB=C

\displaystyle A^{-1}\cdot AXB\cdot B^{-1}=A^{-1}\cdot C\cdot B^{-1}

\displastyle IXI=A^{-1}\cdot C\cdot B^{-1}

\displastyle X=A^{-1}\cdot C\cdot B^{-1}

Matrisi boşalttıktan sonra

X

matrislerle işlem yapmak gerekir. Bu nedenle ilk önce A’nın ters matrisini hesaplıyoruz:

\displaystyle  A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}

Ayrıca B matrisini de ters çeviririz:

\displaystyle  B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Şimdi matrisi hesaplamak için tüm matrisleri ifadenin yerine koyuyoruz

X :

\displaystyle X=A^{-1}\cdot C\cdot B^{-1}

\displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

İlk önce soldaki çarpma işlemini çözüyoruz

\displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

\displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Ve son olarak kalan çarpma işlemini yapıyoruz:

\displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}

Alıştırma 4

Olmak

\displaystyle A

Ve

\displaystyle B

aşağıdaki 3×3 boyutlu matrisler:

\displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}

Matrisin hesaplanması

X

aşağıdaki matris denklemini karşılar:

\displaystyle B^{t}- AX=B

İlk önce matrisi temizliyoruz

X

matris denkleminin:

\displaystyle B^t- AX=B

\displaystyle B^t- B=AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=A^{-1}\cdot AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=IX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=X

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

Matrisi izole ettikten sonra

X

matrislerle işlem yapmak gerekir. Bu nedenle ilk önce A’nın ters matrisini hesaplıyoruz:

\displaystyle  A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\  1 & 2 \end{vmatrix} & \begin{vmatrix}  0 & -1  \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix}  0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1  & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2  \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\  -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1  & 1\\ 0 & 0  \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1  & 0 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1  & -2 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}

Şimdi X’i hesaplamak için tüm matrisleri ifadenin yerine koyuyoruz:

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

B matrisini devriyoruz:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

Parantezleri matrisleri çıkararak çözeriz:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}

Ve son olarak matris çarpımını yapıyoruz:

\displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3}  & \bm{-6} & \bm{9} \end{pmatrix}

Yorum bırakın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Scroll to Top