Limites trigonométricos

Aqui você descobrirá como resolver limites trigonométricos. Você poderá ver diversos exemplos de limites de funções trigonométricas e até praticar com passo a passo resolvidos exercícios sobre limites trigonométricos.

O que são limites trigonométricos?

Limites trigonométricos são limites calculados em funções trigonométricas. Para resolver limites trigonométricos, deve-se aplicar um procedimento preliminar, pois geralmente dão origem a indeterminações.

Além disso, não existem limites infinitos de funções trigonométricas, porque são funções periódicas. Ou seja, seus gráficos são repetidos continuamente e periodicamente sem tender a um valor específico.

Fórmulas de limite trigonométrico

Todos os limites trigonométricos são calculados a partir das duas fórmulas a seguir:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}=1

Se tentarmos calcular o limite por substituição, obtemos a indeterminação zero entre zero:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}=\frac{\text{sen}(0)}{0}=\frac{0}{0}

Mas esta fórmula trigonométrica pode ser demonstrada calculando valores da função mais próxima e mais próxima de x=0 (ângulos em radianos).

\displaystyle f(x)=\frac{\text{sen}(x)}{x}=1

\begin{array}{c}\begin{array}{l}f(-1)=\cfrac{\text{sen}(-1)}{-1}=0,84147\\[3ex]f(-0,1)=\cfrac{\text{sen}(-0,1)}{-0,1}=0,99833\\[3ex]f(-0,01)=\cfrac{\text{sen}(-0,01)}{-0,01}=0,99998\\[3ex]f(-0,001)=\cfrac{\text{sen}(-0,001)}{-0,001}=0,99999\end{array}\\[14ex]\vdots\\[2ex]\displaystyle\lim_{x\to 0^-}\frac{\text{sen}(x)}{x}=1\end{array}

\begin{array}{c}\begin{array}{l}f(1)=\cfrac{\text{sen}(1)}{1}=0,84147\\[3ex]f(0,1)=\cfrac{\text{sen}(0,1)}{0,1}=0,99833\\[3ex]f(0,01)=\cfrac{\text{sen}(0,01)}{0,01}=0,99998\\[3ex]f(0,001)=\cfrac{\text{sen}(0,001)}{0,001}=0,99999\end{array}\\[14ex]\vdots\\[2ex]\displaystyle\lim_{x\to 0^+}\frac{\text{sen}(x)}{x}=1\end{array}

Os dois limites laterais da função trigonométrica dão 1, então o limite no ponto x=0 é 1:

\begin{array}{c}\displaystyle\lim_{x\to 0^-}\frac{\text{sen}(x)}{x}=\lim_{x\to 0^+}\frac{\text{sen}(x)}{x}=1\\[3ex]\color{orange}\bm{\downarrow}\\[2ex]\lim_{x\to 0}\displaystyle\frac{\text{sen}(x)}{x}=1\end{array}

Assim, o limite trigonométrico do seno de x dividido por x quando x tende a 0 é igual a 1.

Esta fórmula também pode ser aplicada para vários ângulos:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(kx)}{kx}=1

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(x)}{x}=0

Se tentarmos encontrar o limite por substituição direta, obteremos a forma indeterminada zero entre zero:

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(x)}{x}=}\frac{1-\text{cos}(0)}{0}=\frac{1-1}{0}=\frac{0}{0}

Mas podemos verificar a igualdade na fórmula acima. Para fazer isso, primeiro você deve multiplicar o numerador e o denominador da fração por 1 mais o cosseno de x:

\displaystyle\lim_{x\to 0}\frac{\bigl(1-\text{cos}(x)\bigr)\cdot \bigl(1+\text{cos}(x)\bigr)}{x\cdot \bigl(1+\text{cos}(x)\bigr)}

Agora temos uma identidade notável no numerador da fração, então podemos simplificá-la:

\displaystyle\lim_{x\to 0}\frac{1^2-\text{cos}^2(x)}{x\cdot \bigl(1+\text{cos}(x)\bigr)}

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}^2(x)}{x\cdot \bigl(1+\text{cos}(x)\bigr)}

Partindo da identidade trigonométrica fundamental, reescrevemos o numerador:

\text{sen}^2(x)+\text{cos}^2(x)=1 \ \longrightarrow \ \text{sen}^2(x)=1-\text{cos}^2(x)

\displaystyle\lim_{x\to 0}\frac{\text{sen}^2(x)}{x\cdot \bigl(1+\text{cos}(x)\bigr)}

Podemos, portanto, transformar a fração em um produto de frações:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)\cdot \text{sen}(x)}{x\cdot \bigl(1+\text{cos}(x)\bigr)}

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot \frac{\text{sen}(x)}{1+\text{cos}(x)}

Usando as propriedades dos limites, podemos converter a expressão acima em um produto de limites:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot \lim_{x\to 0}\frac{\text{sen}(x)}{1+\text{cos}(x)}

Usando a fórmula demonstrada acima, podemos simplificar facilmente o limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}=1

\displaystyle 1\cdot \lim_{x\to 0}\frac{\text{sen}(x)}{1+\text{cos}(x)}

\displaystyle \lim_{x\to 0}\frac{\text{sen}(x)}{1+\text{cos}(x)}

E finalmente, calculamos o limite resultante:

\displaystyle \lim_{x\to 0}\frac{\text{sen}(0)}{1+\text{cos}(0)}=\frac{0}{1+1}=\frac{0}{2}=0

Portanto, a fórmula do limite trigonométrico é verificada:

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(x)}{x}=0

Tal como acontece com a outra fórmula, também pode ser usada para vários ângulos:

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(kx)}{kx}=0

Portanto, para resolver limites trigonométricos, devemos utilizar a aritmética para transformar as funções e obter expressões semelhantes a estas. Desta forma podemos utilizar uma das duas fórmulas e encontrar o valor do limite.

Por outro lado, às vezes podemos precisar aplicar certas identidades trigonométricas, por isso deixamos todas as fórmulas abaixo para você

Fórmula que liga as três principais razões trigonométricas:

\text{tan}(x)=\cfrac{\text{sen}(x)}{\text{cos}(x)}

Identidade trigonométrica fundamental:

\text{sen}^2(x)+\text{cos}^2(x)=1

Relações trigonométricas derivadas do fundamental:

1+\text{tan}^2 (x)=\cfrac{1}{\text{cos}^2(x)}=\text{sec}^2(x)

1+\text{cot}^2 (x)=\cfrac{1}{\text{sen}2(x)}=\text{cosec}^2(x)

Ângulos opostos:

\text{sen}(-x)=-\text{sen}(x)

\text{cos}(-x)=\text{cos}(x)

\text{tan}(-x)=-\text{tan}(x)

Soma de dois ângulos:

\text{sen}(x+y)=\text{sen}(x)\text{cos}(y)+\text{cos}(x)\text{sen}(y)

\text{cos}(x+y)=\text{cos}(x)\text{cos}(y)-\text{sen}(x)\text{sen}(y)

\text{tan}(x+y)=\cfrac{\text{tan}(x)+\text{tan}(y)}{1-\text{tan}(x)\text{tan}(y)}

Diferença de dois ângulos:

\text{sen}(x-y) = \text{sen}(x)\text{cos}(y)-\text{cos}(x)\text{sen}(y)

\text{cos}(x-y) = \text{cos}(x)\text{cos}(y)+ \text{sen}(x) sen(y)

\text{tan}(x-y)=\cfrac{\text{tan}(x)-\text{tan}(y)}{1+\text{tan}(x)\text{tan}(y)}

Ângulo duplo:

\text{sen}(2x) = 2\text{sen}(x)\text{cos}(x)

\text{cos}(2x) =\text{cos}^2(x)-\text{sen}^2(x)

\text{tan}(2x) =\cfrac{2\text{tan}(x)}{1-\text{tan}^2(x)}

Meio ângulo:

\displaystyle \text{sen}\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1-\text{cos}(x)}{2}}

\displaystyle \text{cos}\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1+\text{cos}(x)}{2}}

\displaystyle\text{tan}\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1-\text{cos}(x)}{1+\text{cos}(x)}}

Adição e subtração de seno e cosseno:

\displaystyle \text{sen}(x)+\text{sen}(y)=2\text{sen}\left(\frac{x+y}{2} \right)\text{cos}\left(\frac{x-y}{2} \right)

\displaystyle \text{sen}(x)-\text{sen}(y)=2\text{cos}\left(\frac{x+y}{2} \right)\text{sen}\left(\frac{x-y}{2} \right)

\displaystyle \text{cos}(x)+\text{cos}(y)=2\text{cos}\left(\frac{x+y}{2} \right)\text{cos}\left(\frac{x-y}{2} \right)

\displaystyle \text{cos}(x)-\text{cos}(y)=-2\text{sen}\left(\frac{x+y}{2} \right)\text{sen}\left(\frac{x-y}{2} \right)

Produto de senos e cossenos:

\displaystyle \text{sen}(x)\cdot \text{sen}(y)=\frac{1}{2}\Bigl[\text{cos}(x-y)-\text{cos}(x+y)\Bigr]

\displaystyle \text{cos}(x)\cdot \text{cos}(y)=\frac{1}{2}\Bigl[\text{cos}(x+y)+\text{cos}(x-y)\Bigr]

\displaystyle \text{sen}(x)\cdot \text{cos}(y)=\frac{1}{2}\Bigl[\text{sen}(x+y)+\text{sen}(x-y)\Bigr]

Para que você possa ver exatamente como os limites trigonométricos são calculados, reunimos abaixo um exemplo passo a passo.

Exemplo de limite trigonométrico

Vamos ver como um limite trigonométrico é resolvido usando o seguinte exemplo:

\displaystyle\lim_{x\to 0}\frac{\text{tan}(x)}{x}

Tentando calcular o limite trigonométrico, obtemos a indeterminação de zero entre zero:

\displaystyle\lim_{x\to 0}\frac{\text{tan}(x)}{x}=\frac{\text{tan}(0)}{0}=\frac{0}{0}

Veja: limites de zero entre zero

É portanto necessário transformar a função trigonométrica para resolver o limite. A função tangente é igual ao seno dividido pelo cosseno, então:

\text{tan}(x)=\cfrac{\text{sen}(x)}{\text{cos}(x)}

\displaystyle\lim_{x\to 0}\frac{\text{tan}(x)}{x}=\lim_{x\to 0}\frac{\displaystyle\frac{\text{sen}(x)}{\text{cos}(x)}}{x}

Podemos agora expressar a função como um produto aplicando as propriedades das frações:

\displaystyle\frac{\displaystyle\frac{a}{b}}{\displaystyle\frac{c}{d}}=\frac{a\cdot d}{b\cdot c}

\begin{array}{l}\displaystyle\lim_{x\to 0}\frac{\displaystyle\frac{\text{sen}(x)}{\text{cos}(x)}}{\displaystyle\frac{x}{1}}=\lim_{x\to 0}{\frac{\text{sen}(x)\cdot 1}{\text{cos}(x) \cdot x}=\\[6ex]\displaystyle =\lim_{x\to 0}{\frac{\text{sen}(x)}{x\text{cos}(x)}=\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot \frac{1}{\text{cos}(x)}\end{array}

Usando as propriedades dos limites, podemos converter o limite de duas funções multiplicadas no produto de dois limites:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot\frac{1}{\text{cos}(x)}=\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot\lim_{x\to 0}\frac{1}{\text{cos}(x)}

Como mostramos acima, o primeiro limite trigonométrico dá 1:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}=1

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot\lim_{x\to 0}\frac{1}{\text{cos}(x)}=1\cdot\lim_{x\to 0}\frac{1}{\text{cos}(x)}=\lim_{x\to 0}\frac{1}{\text{cos}(x)}

Então basta fazer o seguinte cálculo:

\displaystyle \lim_{x\to 0}\frac{1}{\text{cos}(x)}=\frac{1}{\text{cos}(0)}=\frac{1}{1}=1

Exercícios resolvidos sobre limites trigonométricos

Exercício 1

Resolva o seguinte limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(4x)}{2x}

Primeiro, tentamos calcular o limite trigonométrico por avaliação direta:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(4x)}{2x}=\frac{\text{sen}(4\cdot 0)}{2\cdot 0}=\frac{0}{0}

Mas obtemos zero sobre zero indeterminação. Portanto, precisamos aplicar transformações à função.

Primeiro, deixaremos o x no denominador fazendo o seguinte:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(4x)}{2x}=\lim_{x\to 0}\frac{1}{2}\cdot\frac{\text{sen}(4x)}{x}=\frac{1}{2}\cdot\lim_{x\to 0}\frac{\text{sen}(4x)}{x}

Agora multiplicamos e dividimos a fração por 4 para obter uma expressão com a qual a primeira fórmula para limites trigonométricos pode ser aplicada:

\displaystyle\frac{1}{2}\lim_{x\to 0}\frac{\text{sen}(4x)\cdot 4}{x\cdot 4}=\frac{1}{2}\cdot 4 \cdot \lim_{x\to 0}\frac{\text{sen}(4x)}{4x}=2\lim_{x\to 0}\frac{\text{sen}(4x)}{4x}

Por fim, aplicamos a fórmula vista no início e resolvemos o limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(kx)}{kx}=1

\displaystyle 2\lim_{x\to 0}\frac{\text{sen}(4x)}{4x}=2\cdot 1=\bm{2}

Exercício 2

Calcule o seguinte limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)+\text{tan}(x)}{x}

Primeiro, tentamos encontrar o limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)+\text{tan}(x)}{x}=\frac{\text{sen}(0)+\text{tan}(0)}{0}=\frac{0}{0}

Mas a forma indeterminada zero corresponde a zero é alcançada.

Então, convertemos a tangente em um quociente do seno e do cosseno:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)+\text{tan}(x)}{x}=\lim_{x\to 0}\frac{\displaystyle\text{sen}(x)+\frac{\text{sen}(x)}{\text{cos}(x)}}{x}

Multiplicamos e dividimos pelo cosseno de x:

\displaystyle\lim_{x\to 0}\frac{\left(\displaystyle\text{sen}(x)+\frac{\text{sen}(x)}{\text{cos}(x)}\right)\cdot\text{cos}(x)}{x\cdot\text{cos}(x)}=\lim_{x\to 0}\frac{\text{sen}(x)\text{cos}(x)+\text{sen}(x)}{x\cdot\text{cos}(x)}

Pegamos um fator comum no numerador e separamos o limite trigonométrico em dois:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)(\text{cos}(x)+1)}{x\cdot\text{cos}(x)}=\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot\lim_{x\to 0}\frac{\text{cos}(x)+1}{\text{cos}(x)}

E finalmente, encontramos o resultado do limite trigonométrico:

\displaystyle\lim_{x\to 0}\frac{\text{sen}(x)}{x}\cdot\lim_{x\to 0}\frac{\text{cos}(x)+1}{\text{cos}(x)}=1\cdot\frac{\text{cos}(0)+1}{\text{cos}(0)} =\frac{1+1}{1}=\bm{2}

Exercício 3

Resolva o limite da seguinte função trigonométrica quando x se aproxima de zero:

\displaystyle\lim_{x\to 0}\frac{\text{tan}(x)-\text{sen}{(x)}}{3x\cdot\text{tan}(x)}

Fazendo o cálculo direto obtemos o limite indeterminado 0 entre 0:

\displaystyle\lim_{x\to 0}}\frac{\text{tan}(x)-\text{sen}(x)}{3x\cdot\text{tan}(x)}=\frac{\text{tan}(0)-\text{sen}(0)}{3\cdot 0\cdot\text{tan}(0)}=\frac{0}{0}

Assim, simplificaremos o limite dividindo cada termo pela tangente de x:

\displaystyle\lim_{x\to 0}\frac{\displaystyle\frac{\text{tan}(x)}{\text{tan}(x)}-\frac{\text{sen}(x)}{\text{tan}(x)}}{\displaystyle\frac{3x\cdot\text{tan}(x)}{\text{tan}(x)}}=\lim_{x\to 0}\frac{\displaystyle 1-\frac{\text{sen}(x)}{\text{tan}(x)}}{3x}

Segundo, podemos deduzir da identidade trigonométrica fundamental que a fração do numerador é equivalente ao cosseno de x:

\text{tan}(x)=\cfrac{\text{sen}(x)}{\text{cos}(x)}\ \longrightarrow \ \text{cos}(x)=\cfrac{\text{sen}(x)}{\text{tan}(x)}

\displaystyle\lim_{x\to 0}\frac{\displaystyle 1-\frac{\text{sen}(x)}{\text{tan}(x)}}{3x}=\lim_{x\to 0}\frac{1-\text{cos}(x)}{3x}

E aplicando a segunda fórmula demonstrada na teoria dos limites trigonométricos, podemos facilmente resolver o limite:

\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(x)}{x}=0

\begin{array}{l}\displaystyle\lim_{x\to 0}\frac{1-\text{cos}(x)}{3x}=\lim_{x\to 0}\frac{1}{3}\cdot \frac{1-\text{cos}(x)}{x}=\\[4ex]\displaystyle =\frac{1}{3}\lim_{x\to 0}\frac{1-\text{cos}(x)}{x}=\frac{1}{3}\cdot 0=\bm{0}\end{array}

Exercício 4

Determine a solução do seguinte limite trigonométrico no ponto x=0:

\displaystyle\lim_{x\to 0}\frac{2\text{sen}(x)\text{cos}(x)\text{sen}(5x)}{x^2}

Se tentarmos resolver o limite, encontraremos a forma indeterminada 0/0:

\displaystyle\lim_{x\to 0}\frac{2\text{sen}(x)\text{cos}(x)\text{sen}(5x)}{x^2}=\frac{2\text{sen}(0)\text{cos}(0)\text{sen}(5\cdot 0)}{0^2}=\frac{0}{0}

A expressão algébrica para o numerador pode ser reescrita usando a identidade trigonométrica do seno de um ângulo duplo:

\text{sen}(2x)=2\text{sen}(x)\text{cos}(x)

\displaystyle\lim_{x\to 0}\frac{2\text{sen}(x)\text{cos}(x)\text{sen}(5x)}{x^2}=\lim_{x\to 0}\frac{\text{sen}(2x)\text{sen}(5x)}{x^2}

Agora vamos separar o limite da função trigonométrica em um produto:

\begin{array}{l}\displaystyle\lim_{x\to 0}\frac{\text{sen}(2x)\cdot \text{sen}(5x)}{x\cdot x}=\\[4ex]\displaystyle =\lim_{x\to 0}\frac{\text{sen}(2x)}{x}\cdot\frac{\text{sen}(5x)}{x}=\\[4ex]\displaystyle =\lim_{x\to 0}\frac{\text{sen}(2x)}{x}\cdot\lim_{x\to 0}\frac{\text{sen}(5x)}{x}\end{array}

E, finalmente, resolvemos o limite trigonométrico aplicando as propriedades dos limites:

\begin{array}{l}\displaystyle\lim_{x\to 0}\frac{\text{sen}(2x)}{x}\cdot\lim_{x\to 0}\frac{\text{sen}(5x)}{x}=\\[4ex]\displaystyle =2\cdot \lim_{x\to 0}\frac{\text{sen}(2x)}{2x}\cdot 5\cdot \lim_{x\to 0}\frac{\text{sen}(5x)}{5x}=\\[4ex]\displaystyle =2\cdot 1\cdot 5\cdot 1=\bm{10}\end{array}

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima