Nesta seção veremos o que são e como calcular uma matriz complementar menor, uma adjunta e a matriz adjunta . Além disso, você encontrará exemplos, para que você entenda perfeitamente, e exercícios resolvidos passo a passo, para que você possa praticar.
Qual é o menor complementar?
É chamado de complemento menor de um elemento.
![]()
ao determinante obtido excluindo a linha
![]()
e a coluna
![]()
de uma matriz.
Como calcular o complementar menor de um elemento?
Vamos ver como o menor complementar de um elemento é calculado usando alguns exemplos:
Exemplo 1:
Calcule o complemento menor de 1 da seguinte matriz quadrada 3 × 3:
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
O complementar menor de 1 é o determinante da matriz que permanece ao eliminar a linha e coluna onde está localizado o 1. Ou seja, removendo a primeira linha e a segunda coluna:
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} \cellcolor[HTML]{F5B7B1}6 & \cellcolor[HTML]{F5B7B1}1 & \cellcolor[HTML]{F5B7B1}7 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 3 & \cellcolor[HTML]{F5B7B1}2 & 0 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 5 & \cellcolor[HTML]{F5B7B1}8 & 4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-cb0021e61d4a3779378734771071bdfa_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 1} = \begin{vmatrix} 3 & 0 \\[1.1ex] 5 & 4 \end{vmatrix} = \bm{12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7a38c134fa8e592ff15956701ce4521c_l3.png)
Exemplo 2:
Desta vez calcularemos o complementar menor de 0 da mesma matriz de antes:
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
O complementar menor de 0 é o determinante da matriz removendo a linha e a coluna onde o 0 está:
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} 6 & 1 & \cellcolor[HTML]{F5B7B1}7 \\ & & \cellcolor[HTML]{F5B7B1} \\[-2ex] \cellcolor[HTML]{F5B7B1} 3 & \cellcolor[HTML]{F5B7B1}2 & \cellcolor[HTML]{F5B7B1}0 \\ & &\cellcolor[HTML]{F5B7B1} \\[-2ex] 5 & 8 & \cellcolor[HTML]{F5B7B1}4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeeb42496216ad8689d1a70807b56644_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 0} = \begin{vmatrix} 6 & 1 \\[1.1ex] 5 & 8 \end{vmatrix} = \bm{43}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bd1eff11f2081d56b20c97203fc053c0_l3.png)
Exercícios resolvidos para menores complementares
Exercício 1
Calcule o menor complemento de 3 da seguinte matriz 3×3:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 5 & 1 & 2 \\[1.1ex] 3 & 4 & 7 \\[1.1ex] -1 & 6 & 7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-16dac836fa9d63465e46dd35e2f36249_l3.png)
O complementar menor de 3 é o determinante da matriz que permanece após a remoção da linha e coluna onde está o 3:
![Rendered by QuickLaTeX.com \text{Menor complementario de 3} = \begin{vmatrix} 1 & 2 \\[1.1ex] 6 & 7 \end{vmatrix} = \bm{-5}](https://mathority.org/wp-content/ql-cache/quicklatex.com-23b957e07aa004db36332997e906169f_l3.png)
Exercício 2
Encontre o complementar menor de 5 da seguinte matriz de ordem 3:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2 & 4 & -2 \\[1.1ex] 1 & 3 & 4 \\[1.1ex] 5 & 8 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-870e864969258f55a07ecd82c68c3132_l3.png)
O complementar menor de 5 é o determinante da matriz que obtemos excluindo a linha e a coluna onde está o 5:
![Rendered by QuickLaTeX.com \text{Menor complementario de 5} = \begin{vmatrix} 4 & -2 \\[1.1ex] 3 & 4 \end{vmatrix} = \bm{22}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f9fc980c8adf2b46e6bcfea0ef69737a_l3.png)
Exercício 3
Calcule o complemento menor de 6 da seguinte matriz 4×4:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 1 & 3 & 4 \\[1.1ex] 2 & 6 & -1 & 8 \\[1.1ex] 3 & 9 & -1 & 4 \\[1.1ex] 5 & 4 & 1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c61e20d710e35ab2b27c94ca720e01a9_l3.png)
O complementar menor de 6 é o determinante da matriz que permanece após a remoção da linha e coluna onde está o 6:
![Rendered by QuickLaTeX.com \text{Menor complementario de 6} = \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5& 1 & 3 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-60150a09c3023b5f1e147bf437df719c_l3.png)
Resolvemos o determinante com a regra de Sarrus:
![Rendered by QuickLaTeX.com \displaystyle \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5 & 1 & 3 \end{vmatrix}=-3+60+12+20-4-27 = \bm{58}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f331c9c3723df34235d8f172f5f41750_l3.png)
Qual é o adjunto de um elemento de array?
O deputado de
![]()
, ou seja, item de linha
![]()
e a coluna
![]()
, é obtido com a seguinte fórmula:
![]()
Como obter o adjunto de um elemento do array?
Vamos ver como o adjunto de um elemento é calculado através de vários exemplos:
Exemplo 1:
Calcule o adjunto de 4 da seguinte matriz de ordem 3:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
O 4 está na linha 2 e na coluna 1 , então neste caso
![]()
E
![]()
![]()
E, como vimos anteriormente, o complemento menor de 4 é o determinante da matriz, eliminando a linha e a coluna onde está localizado o 4. Portanto:
![Rendered by QuickLaTeX.com \text{Adjunto de} 4 = \displaystyle(-1)^{2+1} \bm{\cdot} \begin{vmatrix} 2 & 3 \\[1.1ex] 8 & 9 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b1cdd0dac0607a955fcfb19849c05276_l3.png)
Agora resolvemos o determinante e encontramos o adjunto de 4:
![]()
Lembre-se de que um número negativo elevado a um expoente par é positivo. Portanto, se o -1 for elevado a um número par, ele se tornará positivo.
![]()
Por outro lado, se um número negativo for elevado a um expoente ímpar, ele será negativo. Portanto, se o -1 for elevado a um número ímpar, será sempre negativo.
![]()
Exemplo 2:
Encontraremos o deputado de 5 da mesma matriz anterior:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 5 = \displaystyle(-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 7 & 9 \end{vmatrix} = 1 \cdot (-12) = \bm{-12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f3e47d30b12e053b3f5950033640b662_l3.png)
Exemplo 3:
Vamos fazer o deputado de 3 da mesma matriz:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 3 \displaystyle = (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 4 & 5 \\[1.1ex] 7 & 8 \end{vmatrix} = 1 \cdot (-3) = \bm{-3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-954d6137c753a58e91682334addc5345_l3.png)
O adjunto de um elemento é utilizado para calcular determinantes, como veremos mais adiante, e para calcular a matriz adjunta, que é o que veremos agora.
Exercícios resolvidos para assistentes
Exercício 1
Calcule o adjunto de 2 da seguinte matriz 3×3:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 & 1 \\[1.1ex] -1 & -3 & 5 \\[1.1ex] 5 & 3 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-340d5ef9265b33c7a6ad4ac7d72633f5_l3.png)
Para obter o resultado do adjunto de 2, basta aplicar a fórmula do adjunto de um elemento:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 2} \displaystyle = (-1)^{1+1} \bm{\cdot} \begin{vmatrix} -3 & 5 \\[1.1ex] 3 & 1 \end{vmatrix} = 1 \cdot (-18) = \bm{-18}](https://mathority.org/wp-content/ql-cache/quicklatex.com-74e69b36278f7b0518a20be2e02aea4c_l3.png)
Exercício 2
Encontre o adjunto de 4 da seguinte matriz de ordem 3:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 3 & 1 & -1 \\[1.1ex] 2 & 9 & 4 \\[1.1ex] 6 & 5 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e21733cd834cdbeed5ca8fc433068ccf_l3.png)
Para obter o deputado de 4, devemos utilizar a fórmula do deputado de um elemento:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 4} \displaystyle = (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 3 & 1 \\[1.1ex] 6 & 5 \end{vmatrix} = -1 \cdot 9 = \bm{-9}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c4a2228588aeef08594e7f3cc93c53ec_l3.png)
Exercício 3
Encontre o deputado de 7 da seguinte matriz 4×4:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 & 5 & -2 \\[1.1ex] 3 & 1 & -3 & 3 \\[1.1ex] 2 & -1 & 4 & 0 \\[1.1ex] 2 & 7 & 9 & -4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-64b3cf6b9f34fce5f66d24502f2434a1_l3.png)
Para fazer o adjunto de 7 aplicamos a fórmula do adjunto de um elemento:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 7} \displaystyle = (-1)^{4+2} \bm{\cdot} \begin{vmatrix} 1 & 5 & -2 \\[1.1ex] 3 & -3 & 3 \\[1.1ex] 2 & 4 & 0\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-54f5200bb9a57df8b0aa73271ec26c7f_l3.png)
Aplicamos a regra de Sarrus para resolver o determinante de terceira ordem:
![]()
![]()
Qual é a matriz anexa?
A matriz anexada é uma matriz na qual todos os seus elementos foram substituídos por seus substitutos.
Como calcular a matriz adjunta?
Para calcular a matriz de deputados , precisamos substituir todos os elementos da matriz pelos seus deputados.
Vamos ver como é feita a matriz unida através de um exemplo:
Exemplo:
Calcule a matriz adjunta da seguinte matriz quadrada de dimensão 2×2:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 4 & -1 \\[1.1ex] 3 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e1d84d025062b24cb6a7ef021cb55de1_l3.png)
Para calcular a matriz adjunta, devemos calcular o adjunto de cada elemento da matriz . Portanto, primeiro resolveremos as conjunções de todos os elementos com a fórmula:
![]()
![]()
![]()
![]()
![]()
Agora só precisamos substituir cada elemento do array
![]()
pelo seu substituto para encontrar a matriz suplente de
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{2} & \bm{-3} \\[1.1ex] \bm{1} & \bm{4} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4c4c2583218c84e184a1911972dca72b_l3.png)
E assim se encontra o deputado de uma matriz. Mas você provavelmente está se perguntando para que servem todos esses cálculos? Bem, uma das utilidades da junção de matrizes é calcular o inverso de uma matriz . Na verdade, o método mais comum para encontrar a matriz inversa é o método da matriz adjunta.
Problemas de matriz adjunta resolvidos
Exercício 1
Calcule a matriz adjunta da seguinte matriz quadrada 2×2:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 \\[1.1ex] -4 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b5fbfc1c22345724f35d7208214f8592_l3.png)
Para calcular a matriz adjunta, devemos calcular o adjunto de cada elemento da matriz. Portanto, primeiro resolveremos as conjunções de todos os elementos com a fórmula:
![]()
![]()
![]()
![]()
Agora só precisamos substituir cada elemento do array
![]()
pelo seu substituto para encontrar a matriz suplente de
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{1} & \bm{4} \\[1.1ex] \bm{-3} & \bm{2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3fdee2506136365c141a81596f1d22_l3.png)
Exercício 2
Encontre a matriz adjunta da seguinte matriz de segunda ordem:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 6 & -2 \\[1.1ex] 3 & -7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b95133fbf999cb6585b3a32f4b1b906b_l3.png)
Para calcular a matriz adjunta, devemos calcular o adjunto de cada elemento da matriz. Portanto, primeiro resolveremos as conjunções de todos os elementos com a fórmula:
![]()
![]()
![]()
![]()
Agora só precisamos substituir cada elemento do array
![]()
pelo seu substituto para encontrar a matriz suplente de
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-7} & \bm{-3} \\[1.1ex] \bm{2} & \bm{6} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-604112d6e7d95ca76dd5266dc2eceb86_l3.png)
Exercício 3
Calcule a matriz adjunta da seguinte matriz 3×3:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 3 & -1 \\[1.1ex] 2 & 4 & 0 \\[1.1ex] 5 & 0 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0072b68810f2662ae9f4ec3d11902f97_l3.png)
Para calcular a matriz adjunta, devemos calcular o adjunto de cada elemento da matriz. Portanto, primeiro resolveremos as conjunções de todos os elementos com a fórmula:
![Rendered by QuickLaTeX.com \text{Adjunto de 1} = \displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 4 & 0 \\[1.1ex] 0 & -2\end{vmatrix} = 1 \cdot (-8) = \bm{-8}](https://mathority.org/wp-content/ql-cache/quicklatex.com-68e2bee7e07b5749033cdf67d90684a6_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 3} = \displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 2 & 0 \\[1.1ex] 5 & -2\end{vmatrix} = -1 \cdot (-4) = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-88120e3a6fa0e6ba43c654ce7884eb41_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -1} = \displaystyle (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 2 & 4 \\[1.1ex] 5 & 0\end{vmatrix} = 1 \cdot (-20) = \bm{-20}](https://mathority.org/wp-content/ql-cache/quicklatex.com-49c170f202956d9571fcce88cd389889_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 2} = \displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 0 & -2\end{vmatrix} = -1 \cdot (-6) = \bm{6}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9dd9f81ddb6bd58f2a4e1241c3fbfdb3_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 4} = \displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 5 & -2\end{vmatrix} = 1 \cdot 3 = \bm{3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ee11d10a5ef1719e3eee0d1de8e2fd1e_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 5 & 0 \end{vmatrix} = -1 \cdot (-15) = \bm{15}](https://mathority.org/wp-content/ql-cache/quicklatex.com-327cba2dd78055703b66b887083d3a50_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 5} = \displaystyle (-1)^{3+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 4 & 0 \end{vmatrix} = 1 \cdot 4 = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d5df97c790e24f1257c7d1073c4e2af8_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{3+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 2 & 0\end{vmatrix} = -1 \cdot 2 = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0d0cd9b3ea07312942362d52f07c04bc_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -2} = \displaystyle (-1)^{3+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 2 & 4 \end{vmatrix} = 1 \cdot (-2) = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-00f3983f64257be282584209b8f2d842_l3.png)
Agora só precisamos substituir cada elemento do array
![]()
pelo seu substituto para encontrar a matriz suplente de
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-8} & \bm{4} & \bm{-20} \\[1.1ex] \bm{6} & \bm{3} & \bm{15} \\[1.1ex] \bm{4} & \bm{-2} & \bm{-2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-01e49ffda72034d74b18ecdd37d1e3b6_l3.png)