Discussão de sistemas de equações utilizando o método gaussiano

Nesta seção veremos como discutir e resolver um sistema de equações pelo método de Gauss-Jordan . Ou seja, determine se é um sistema compatível determinado (DCS), um sistema compatível indeterminado (ICS) ou um sistema incompatível. Além disso, você encontrará exemplos e exercícios resolvidos para que possa praticar e assimilar perfeitamente os conceitos.

Para entender o que vamos explicar a seguir, é importante que você já saiba como resolver um sistema pelo método Gauss , por isso recomendamos que você dê uma olhada antes de continuar.

Sistemas compatíveis determinados pelo método Gauss

Contanto que a última linha da matriz gaussiana seja

\bm{(0 \ 0 \ n \ | \ m)}

, ser

n

E

m

quaisquer dois números, este é um SCD (System Compatível Determinado). Portanto, o sistema possui uma solução única .

A grande maioria dos sistemas são SCD.

Exemplo:

Por exemplo, temos este sistema:

\left. \begin{array}{r} 3x+2y-z=1 \\[2ex] 3x+8y+z=1\\[2ex] 6x+4y-z=-1 \end{array} \right\}

Cuja matriz expandida é:

\left. \begin{array}{r} 3x+2y-z=1 \\[2ex] 3x+8y+z=1\\[2ex] 6x+4y-z=-1 \end{array} \right\}} \ \longrightarrow \ \left( \begin{array}{ccc|c} 3 & 2 & -1 & 1 \\[2ex] 3 & 8 & 1 & 1 \\[2ex] 6 & 4 & -1 & -1 \end{array} \right)

Para resolver o sistema precisamos operar nas linhas da matriz e converter todos os elementos abaixo da diagonal principal em 0. Então da segunda linha subtraímos a primeira linha e da terceira linha subtraímos a primeira linha multiplicada por 2:

\left( \begin{array}{ccc|c}  3 & 2 & -1 & 1 \\[2ex] 3 & 8 & 1 & 1 \\[2ex] 6 & 4 & -1 & -1 \end{array} \right) \begin{array}{c}   \\[2ex] \xrightarrow{f_2 -f_1}    \\[2ex] \xrightarrow{f_3 -2f_1} & \end{array} \left( \begin{array}{ccc|c}   3 & 2 & -1 & 1 \\[2ex] 0 & 6 & 2 & 0 \\[2ex] 0 & 0 & 1 & -3  \end{array} \right)

Uma vez que todos os números abaixo da diagonal principal sejam 0, voltamos para passar o sistema para a forma de equação:

\left( \begin{array}{ccc|c} 3 & 2 & -1 & 1 \\[2ex] 0 & 6 & 2 & 0 \\[2ex] 0 & 0 & 1 & -3 \end{array} \right) \ \longrightarrow \ \left. \begin{array}{r} 3x+2y-z=1 \\[2ex] 6y+2z=0\\[2ex] 1z=-3 \end{array} \right\}

Então esse sistema é SCD , pois a matriz é deslocada e a última linha é do tipo

(0 \ 0 \ n \ | \ m)

. Portanto, resolvemos como sempre: eliminando as incógnitas das equações de baixo para cima.

1z=-3

z = \cfrac{-3}{1}

\bm{z=-3}

Agora que sabemos z, substituímos seu valor na segunda equação para encontrar o valor de

y

:

6y+2z=0\ \xrightarrow{z \ = \ -3} \ 6y+2(-3)=0

6y-6=0

6y=6

y=\cfrac{6}{6}

\bm{y=1}

E por fim, fazemos o mesmo com a primeira equação: substituímos os valores das outras incógnitas e resolvemos

x

:

3x+2y-z=1 \ \xrightarrow{y \ = \ 1 \ ; \ z \ = \ -3} \ 3x+2(1)-(-3)=1

3x+2+3=1

3x=1-2-3

3x=-4

x=\cfrac{-4}{3}

\bm{x= -}\cfrac{\bm{4}}{\bm{3}}

A solução do sistema de equações é, portanto:

\bm{x= -}\cfrac{\bm{4}}{\bm{3}} \qquad \bm{y=1} \qquad \bm{z=-3}

Sistemas incompatíveis pelo método de Gauss

Quando na matriz de Gauss temos uma linha com três 0s consecutivos e um número

\bm{(0 \ 0 \ 0 \ | \ n)}

, é um SI (Sistema Incompatível) e, portanto, o sistema não tem solução .

Exemplo:

Por exemplo, imagine que após operar com a matriz gaussiana de um sistema, ficamos com:

\left( \begin{array}{ccc|c} 4 & 1 & -1 & 0 \\[2ex] 0 & 3 & 1 & -1 \\[2ex] 0 & 0 & 0 & 2 \end{array} \right)

Como a última linha é

(0 \ 0 \ 0 \ | \ 2)

, ou seja, três 0s seguidos de um número no final, é um SE (Sistema Incompatível) e, portanto, o sistema não tem solução .

Embora não seja necessário saber, a seguir você verá porque não tem solução.

Se pegarmos a última linha, teríamos esta equação:

(0 \ 0 \ 0 \ | \ 2) \ \longrightarrow \ 0z = 2

Esta equação nunca será cumprida, porque qualquer que seja o valor que z assuma, multiplicá-lo por 0 nunca dará 2 (qualquer número multiplicado por 0 sempre dará 0). E como esta equação nunca será cumprida, o sistema não tem solução.

Sistemas compatíveis indeterminados pelo método gaussiano

Sempre que uma linha da matriz gaussiana é preenchida com 0

\bm{(0 \ 0 \ 0 \ | \ 0)}

, é um SCI (Sistema Compatível Indeterminado) e, portanto, o sistema possui infinitas soluções .

Vejamos um exemplo de como resolver um ICS:

Exemplo:

\left. \begin{array}{r} x+y+2z=6 \\[2ex] 2x+3y-1z=-2 \\[2ex] 3x+4y+z=4 \end{array} \right\}

Como sempre, primeiro fazemos a matriz expandida do sistema :

\left. \begin{array}{r} x+y+2z=6 \\[2ex] 2x+3y-1z=-2 \\[2ex] 3x+4y+z=4 \end{array} \right\} \ \longrightarrow \ \left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex] 2 & 3 & -1 & -2 \\[2ex] 3 & 4 & 1 & 4 \end{array} \right)

Agora queremos que todos os números abaixo da diagonal principal sejam 0. Então, à segunda linha adicionamos a primeira linha multiplicada por -2:

\begin{array}{lrrr|r}  &2 & 3 & -1 & -2  \\ + & -2 & -2 & -4 & -12  \\ \hline & 0 & 1 & -5 & -14  \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_2} \\ \color{blue}\bm{\leftarrow -2f_1} \\ \phantom{hline} \\ \end{array}

\left( \begin{array}{ccc|c}  1 & 1 & 2 & 6 \\[2ex] 2 & 3 & -1 & -2 \\[2ex] 3 & 4 & 1 & 4\end{array} \right) \begin{array}{c}   \\[2ex]  \xrightarrow{f_2 -2f_1}  \\[2ex] & \end{array} \left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 3 & 4 & 1 & 4 \end{array} \right)

Para converter 3 em 0, na terceira linha adicionamos a primeira linha multiplicada por -3:

\begin{array}{lrrr|r}  & 3 & 4 & 1 & 4 \\ + & -3 & -3 & -6 & -18  \\  \hline & 0 & 1 & -5 & -14  \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_3} \\ \color{blue}\bm{\leftarrow -3f_1} \\ \phantom{hline} \\ \end{array}

\left( \begin{array}{ccc|c}  1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 3 & 4 & 1 & 4 \end{array} \right) \begin{array}{c}   \\[2ex]    \\[2ex] \xrightarrow{f_3 -3f_1} & \end{array} \left( \begin{array}{ccc|c}  1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 0 & 1 & -5 & -14 \end{array} \right)

Para converter o 1 da última linha em 0, na terceira linha adicionamos a segunda linha multiplicada por -1:

\begin{array}{lrrr|r}  & 0 & 1 & -5 & -14   \\ + & 0 & -1 & 5 & 14  \\ \hline & 0 & 0 & 0 & 0  \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_3} \\ \color{blue}\bm{\leftarrow -1f_2} \\ \phantom{hline} \\ \end{array}

\left( \begin{array}{ccc|c}   1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 0 & 1 & -5 & -14 \end{array} \right) \begin{array}{c}   \\[2ex]    \\[2ex] \xrightarrow{f_3 -1f_2} & \end{array} \left( \begin{array}{ccc|c}   1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 0 & 0 & 0 & 0 \end{array} \right)

Como a última linha é toda 0 , podemos removê-la:

\left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \\[2ex] 0 & 0 & 0 & 0  \end{array} \right) \ \longrightarrow \ \left( \begin{array}{ccc|c}   1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14 \end{array} \right)

E como tivemos uma linha inteira preenchida com 0s, este é um SCI.

Terminamos, portanto, com o seguinte sistema:

\left( \begin{array}{ccc|c}   1 & 1 & 2 & 6 \\[2ex] 0 & 1 & -5 & -14  \end{array} \right) \ \longrightarrow \ \left. \begin{array}{r} x+y+2z=6 \\[2ex] y-5z=-14 \end{array} \right\}

Quando o sistema é um SCI, é necessário retirar o valor do parâmetro de um valor desconhecido

\lambda

. E precisamos resolver o sistema com base neste parâmetro

\bm{\lambda}

.

Portanto, atribuímos o valor de

\lambda

para z :

z = \lambda

Embora também pudéssemos ter escolhido qualquer outra incógnita para assumir o valor de

\lambda

.

Agora isolamos y da segunda equação e deixamos que seja uma função de

\lambda

:

y-5z=-14 \ \xrightarrow{z \ = \ \lambda} \  y-5(\lambda )= -14

y-5\lambda=-14

y =-14+  5\lambda

E finalmente excluímos x da primeira equação e também o deixamos como uma função de

\lambda

:

x+y+2z=6 \ \xrightarrow{ y \ = \ -14 + 5\lambda \ ; \ z \ = \  \lambda } \ x+ (-14+ 5\lambda )+2(\lambda ) = 6

x-14 +5\lambda +2\lambda = 6

x=14- 5\lambda -2\lambda + 6

x=20- 7\lambda

As soluções do sistema são, portanto:

\bm{z = \lambda} \qquad \bm{y =-14+ 5\lambda } \qquad \bm{x=20 - 7\lambda}

Como você pode ver, quando o sistema é SCI deixamos as soluções dependendo do parâmetro

\lambda

. E lembre-se que tem infinitas soluções, pois dependendo do valor que leva

\lambda

, a solução será uma ou outra.

Antes de passar aos exercícios resolvidos, você deve saber que embora neste artigo utilizemos o método de Gauss, outra forma de discutir e resolver sistemas de equações lineares é o teorema de Rouche . Na verdade, provavelmente é mais usado.

Exercícios resolvidos para discussão de sistemas de equações pelo método Gauss-Jordan

Exercício 1

Determine que tipo de sistema está envolvido e resolva o seguinte sistema de equações usando o método de Gauss:

\left. \begin{array}{r} x+y+2z=6 \\[2ex] 2x+3y+5z=8 \\[2ex] 3x+3y+6z=9  \end{array} \right\}

A primeira coisa que precisamos fazer é a matriz estendida do sistema:

\left. \begin{array}{r} x+y+2z=6 \\[2ex] 2x+3y+5z=8 \\[2ex] 3x+3y+6z=9 \end{array} \right\}  \longrightarrow \left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex]  2 & 3 & 5 & 8 \\[2ex] 3 & 3 & 6 & 9 \end{array} \right)

Agora precisamos fazer com que todos os números abaixo do array principal sejam 0.

Portanto, realizamos operações de linha para cancelar os dois últimos termos da primeira coluna:

\left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex]  2 & 3 & 5 & 8 \\[2ex]3 & 3 & 6 & 9 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 - 2f_1} \\[2ex] \xrightarrow{f_3 - 3f_1}& \end{array} \left( \begin{array}{ccc|c} 1 & 1 & 2 & 6 \\[2ex] 0 & 1 & 1 & -4 \\[2ex] 0 & 0 & 0 & -9 \end{array} \right)

Obtivemos uma linha da matriz composta por três 0s seguidos de um número. É portanto um SI (Sistema Incompatível) e o sistema não tem solução.

Exercício 2

Determine que tipo de sistema é e encontre a solução para o seguinte sistema de equações usando o método de Gauss:

\left. \begin{array}{r} x-2y+3z=1 \\[2ex] -2x+5y-z=5 \\[2ex] -x+3y+2z=6 \end{array} \right\}

A primeira coisa que precisamos fazer é a matriz estendida do sistema:

\left. \begin{array}{r} x-2y+3z=1 \\[2ex] -2x+5y-z=5 \\[2ex] -x+3y+2z=6  \end{array} \right\}  \longrightarrow \left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex]  -2 & 5 & -1 & 5 \\[2ex] -1 & 3 & 2 & 6 \end{array} \right)

Agora precisamos fazer com que todos os números abaixo do array principal sejam 0.

Portanto, realizamos operações de linha para cancelar os dois últimos termos da primeira coluna:

\left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex]  -2 & 5 & -1 & 5 \\[2ex] -1 & 3 & 2 & 6 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 + 2f_1} \\[2ex] \xrightarrow{f_3 + f_1}  \end{array} \left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7 \\[2ex] 0 & 1 & 5 & 7 \end{array} \right)

Agora vamos tentar remover o último elemento da segunda coluna:

\left( \begin{array}{ccc|c}1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7 \\[2ex] 0 & 1 & 5 & 7  \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{f_3 -f_2} \end{array} \left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7 \\[2ex] 0 & 0 & 0 & 0 \end{array} \right)

Mas obtemos uma linha inteira de 0s. Portanto, este é um SCI e o sistema tem infinitas soluções.

Mas como é um ICS, podemos resolver o sistema com base em

\lambda

. Portanto, excluímos a linha 0:

\left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7 \\[2ex] 0 & 0 & 0 & 0 \end{array} \right) \ \longrightarrow \ \left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7 \end{array} \right)

Expressamos agora a matriz na forma de um sistema de equações com incógnitas:

\left( \begin{array}{ccc|c} 1 & -2 & 3 & 1 \\[2ex] 0 & 1 & 5 & 7  \end{array} \right) \ \longrightarrow \ \left. \begin{array}{r} 1x-2y+3z=1 \\[2ex] 1y+5z=7 \end{array} \right\}

Damos o valor de

\lambda

Para

z :

\bm{z = \lambda}

Substituímos o valor de

z

na segunda equação para encontrar o valor de

y :

1y+5z=7 \ \xrightarrow{z \ = \ \lambda} \ 1y+5(\lambda )=7

y+5\lambda =7

\bm{y=7-5\lambda}

E fazemos o mesmo com a primeira equação: substituímos os valores das outras incógnitas e apagamos

x :

1x-2y+3z=1 \ \xrightarrow{y \ = \ 7-5\lambda \ ; \ z \ = \ \lambda} \ 1x-2(7-5\lambda )+3(\lambda )=1

x-14+10\lambda+3\lambda=1

x=1+14-10\lambda-3\lambda

\bm{x=15-13\lambda}

A solução do sistema de equações é, portanto:

\bm{x=15-13\lambda} \qquad \bm{y=7-5\lambda} \qquad \bm{z = \lambda}

Exercício 3

Descubra que tipo de sistema é e resolva o seguinte sistema de equações pelo método de Gauss:

\left. \begin{array}{r} 4x-4y+z=-4 \\[2ex] x+3y+z=2 \\[2ex] x+5y+2z=6 \end{array} \right\}

A primeira coisa que precisamos fazer é a matriz estendida do sistema:

\left. \begin{array}{r} 4x-4y+z=-4 \\[2ex] x+3y+z=2 \\[2ex] x+5y+2z=6\end{array} \right\}  \longrightarrow \left( \begin{array}{ccc|c} 4 & -4 & 1 & -4 \\[2ex]  1 & 3 & 1 & 2 \\[2ex] 1 & 5 & 2 & 6 \end{array} \right)

Para aplicar o método de Gauss, é mais simples se o primeiro número da primeira linha for 1. Portanto, alteraremos a ordem das linhas 1 e 2:

\left( \begin{array}{ccc|c} 4 & -4 & 1 & -4 \\[2ex]  1 & 3 & 1 & 2 \\[2ex] 1 & 5 & 2 & 6 \end{array} \right) \begin{array}{c} \xrightarrow{f_1 \rightarrow f_2} \\[2ex] \xrightarrow{f_2 \rightarrow f_1} \\[2ex] & \end{array} \left( \begin{array}{ccc|c} 1 & 3 & 1 & 2  \\[2ex] 4 & -4 & 1 & -4 \\[2ex] 1 & 5 & 2 & 6  \end{array} \right)

Agora precisamos fazer com que todos os números abaixo do array principal sejam 0.

Portanto, realizamos operações de linha para cancelar os dois últimos termos da primeira coluna:

\left( \begin{array}{ccc|c}  1 & 3 & 1 & 2  \\[2ex] 4 & -4 & 1 & -4 \\[2ex] 1 & 5 & 2 & 6 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 - 4f_1} \\[2ex] \xrightarrow{f_3 -f_1} \end{array} \left( \begin{array}{ccc|c}  1 & 3 & 1 & 2  \\[2ex] 0 & -16 & -3 & -12 \\[2ex] 0 & 2 & 1 & 4 \end{array} \right)

Agora convertemos o último elemento da segunda coluna em zero:

\left( \begin{array}{ccc|c}1 & 3 & 1 & 2  \\[2ex] 0 & -16 & -3 & -12 \\[2ex] 0 & 2 & 1 & 4   \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{8f_3 + f_2} \end{array} \left( \begin{array}{ccc|c}1 & 3 & 1 & 2  \\[2ex] 0 & -16 & -3 & -12 \\[2ex] 0 & 0 & 5 & 20 \end{array} \right)

Esse sistema é o SCD , pois conseguimos deslocar a matriz e a última linha é do tipo

(0 \ 0 \ n \ | \ m)

. Portanto, terá uma solução única.

Quando todos os números abaixo da diagonal principal forem 0, podemos agora resolver o sistema de equações. Para fazer isso, expressamos a matriz novamente na forma de um sistema de equações com incógnitas:

\left( \begin{array}{ccc|c} 1 & 3 & 1 & 2  \\[2ex] 0 & -16 & -3 & -12 \\[2ex] 0 & 0 & 5 & 20 \end{array} \right) \ \longrightarrow \ \left. \begin{array}{r} x+3y+1z=2 \\[2ex] -16y-3z=-12 \\[2ex] 5z=20 \end{array} \right\}

E resolvemos as incógnitas das equações de baixo para cima. Primeiro resolvemos a última equação:

5z=20

\bm{z}=\cfrac{20}{5} = \bm{4}

Agora substituímos o valor de z na segunda equação para encontrar o valor de y:

-16y-3z=-12 \ \xrightarrow{z \ = \ 4} \ -16y-3(4)=-12

-16y-12=-12

-16y=-12+12

-16y=0

\bm{y}=\cfrac{0}{-16}= \bm{0}

E fazemos o mesmo com a primeira equação: substituímos os valores das outras incógnitas e resolvemos para x:

x+3y+1z=2  \ \xrightarrow{y \ = \ 0 \ ; \ z \ = \ 4} \ x+3(0)+1(4)=2

x+0+4=2

x=2-4

\bm{x=-2}

A solução do sistema de equações é, portanto:

\bm{x=-2} \qquad \bm{y=0} \qquad \bm{z=4}

Exercício 4

Determine que tipo de sistema é e resolva o seguinte sistema de equações pelo método de Gauss:

\left. \begin{array}{r} x-y+4z=2 \\[2ex] -3x-3y+3z=7 \\[2ex] -2x-4y+7z=9 \end{array} \right\}

A primeira coisa que precisamos fazer é a matriz estendida do sistema:

\left. \begin{array}{r} x-y+4z=2 \\[2ex] -3x-3y+3z=7 \\[2ex] -2x-4y+7z=9  \end{array} \right\}  \longrightarrow \left( \begin{array}{ccc|c}1 & -1 & 4 & 2 \\[2ex]  -3 & -3 & 3 & 7 \\[2ex] -2 & -4 & 7 & 9\end{array} \right)

Agora precisamos fazer com que todos os números abaixo do array principal sejam 0.

Portanto, realizamos operações de linha para cancelar os dois últimos termos da primeira coluna:

\left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex]  -3 & -3 & 3 & 7 \\[2ex] -2 & -4 & 7 & 9\end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 + 3f_1} \\[2ex] \xrightarrow{f_3 + 2f_1} \end{array} \left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13\\[2ex] 0 & -6 & 15 & 13\end{array} \right)

Agora vamos tentar remover o último elemento da segunda coluna:

\left( \begin{array}{ccc|c}1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13\\[2ex] 0 & -6 & 15 & 13\end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{f_3 -1f_2} \end{array} \left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13\\[2ex] 0 & 0 & 0 & 0 \end{array} \right)

Mas obtemos uma linha inteira de 0s. Portanto, este é um SCI e o sistema tem infinitas soluções.

Mas como é um ICS, podemos resolver o sistema com base em

\lambda

. Portanto, excluímos a linha 0:

\left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13\\[2ex] 0 & 0 & 0 & 0 \end{array} \right) \ \longrightarrow \ \left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13 \end{array} \right)

Expressamos agora a matriz na forma de um sistema de equações com incógnitas:

\left( \begin{array}{ccc|c} 1 & -1 & 4 & 2 \\[2ex] 0 & -6 & 15 & 13 \end{array} \right) \ \longrightarrow \ \left. \begin{array}{r} 1x-1y+4z=2 \\[2ex] -6y+15z=13 \end{array} \right\}

Damos o valor de

\lambda

Para

z :

\bm{z = \lambda}

Substituímos o valor de

z

na segunda equação para encontrar o valor de

y :

-6y+15z=13 \ \xrightarrow{z \ = \ \lambda} \ -6y+15(\lambda )=13

-6y+15\lambda =13

-6y =13-15\lambda

\bm{y =} \mathbf{\cfrac{13-15\lambda }{-6}}

E fazemos o mesmo com a primeira equação: substituímos os valores das outras incógnitas e apagamos

x :

1x-1y+4z=2 \ \xrightarrow{y \ = \ \frac{13-15\lambda }{-6} \ ; \ z \ = \ \lambda} \ 1x-1\left(\cfrac{13-15\lambda }{-6} \right)+4(\lambda)=2

x-\cfrac{13-15\lambda }{-6} +4\lambda=2

x=2+\cfrac{13-15\lambda }{-6} -4\lambda

Temos uma soma com frações. Portanto, reduzimos todos os termos a um denominador comum:

x=\cfrac{-6 \cdot 2}{-6}+\cfrac{13-15\lambda }{-6} -\cfrac{-6 \cdot 4 \lambda}{-6}

x=\cfrac{-12}{-6}+\cfrac{13-15\lambda }{-6} -\cfrac{-24 \lambda}{-6}

Como agora todos têm o mesmo denominador, podemos agrupá-los em uma única fração:

x=\cfrac{-12+13-15\lambda-(-24 \lambda) }{-6}

E finalmente operamos no numerador:

x=\cfrac{-12+13-15\lambda+24 \lambda }{-6}

\bm{x=}\mathbf{\cfrac{1+9\lambda }{-6} }

A solução do sistema de equações é, portanto:

\bm{x=15-13\lambda} \qquad \bm{y =} \mathbf{\cfrac{13-15\lambda }{-6}} \qquad \bm{z = \lambda}

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima