Derivada de um quociente (ou divisão)

Neste artigo explicamos como derivar um quociente (ou divisão) de duas funções. Você encontrará exemplos de derivadas de quocientes de funções e, além disso, poderá praticar com exercícios passo a passo sobre derivadas de divisões.

Fórmula para a derivada de um quociente

A derivada de um coeficiente (ou divisão) das funções é idêntica à derivada da função numerador pela função denominador menos do que a função numerador pela derivada da função denominador dividida pelo quadrado da função de denominador alto.

fórmula para a derivada de uma divisão ou quociente

Como você pode ver, quando aplicamos a regra da derivada de um quociente (ou de uma divisão), ainda temos uma fração após a diferenciação. Mas, além disso, no numerador temos duas multiplicações e uma subtração, e o denominador é elevado à potência de dois.

Exemplos de derivadas de quocientes

Acabamos de ver qual é a fórmula da derivada de um quociente de duas funções, a seguir resolveremos vários exemplos de derivadas deste tipo de operações. Lembre-se, se você não entende como um quociente funcional é derivado, pergunte-nos na seção de comentários.

Exemplo 1

Neste exemplo, derivaremos uma função potencial dividida por uma função trigonométrica:

f(x)=\cfrac{3x^2+4x}{\text{sen}(2x)}

A fórmula para a derivada de uma divisão de duas funções diferentes é a seguinte:

\begin{array}{c}z(x)=\cfrac{f(x)}{g(x)}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] z'(x)=\cfrac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\bigl(g(x)\bigr)^2}\end{array}

Então primeiro precisamos calcular a derivada de cada função separadamente:

\cfrac{d}{dx}\ (3x^2+4x)=6x+4

\cfrac{d}{dx}\ \text{sen}(2x)=2\text{cos}(2x)

A derivada de toda a função é, portanto:

\begin{array}{c}f(x)=\cfrac{3x^2+4x}{\text{sen}(2x)}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] f'(x)=\cfrac{(6x+4)\cdot\text{sen}(2x)-(3x^2+4x)\cdot 2\text{cos}(2x)}{\text{sen}^2(2x)}\end{array}

Exemplo 2

Neste caso encontraremos a derivada de uma constante dividida por uma função:

f(x)=\cfrac{10}{x^2+3x-9}

Como vimos acima, a regra para a derivada de uma divisão de duas funções diferentes é a seguinte:

\begin{array}{c}z(x)=\cfrac{f(x)}{g(x)}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] z'(x)=\cfrac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\bigl(g(x)\bigr)^2}\end{array}

Então, calculamos a derivada do numerador e do denominador separadamente:

\cfrac{d}{dx}\ 10=0

\cfrac{d}{dx}\ (x^2+3x-9)=2x+3

E finalmente, encontramos a derivada da divisão inteira:

\begin{array}{c}f(x)=\cfrac{10}{x^2+3x-9}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] f'(x)=\cfrac{0\cdot (x^2+3x-9)-10\cdot (2x+3)}{\left(x^2+3x-9\right)^2}=\cfrac{-20x+30}{\left(x^2+3x-9\right)^2}\end{array}

Na verdade, podemos derivar uma fórmula para diferenciar diretamente quando temos uma constante no numerador dividida por uma função, pois a derivada da constante é sempre 0. Portanto, a seguinte fórmula será sempre verdadeira:

\definecolor{taronjaquadreejemplo}{HTML}{FF9800}  \newtcbox{\mymath}[1][]{%     nobeforeafter, math upper, tcbox raise base,     enhanced, colframe=taronjaquadreejemplo,      boxrule=1.1pt, boxsep=2mm,     #1} \begin{empheq}[box={\mymath[colback=white, shadow={2mm}{-2mm}{0mm}{taronjaquadreejemplo!20!white,} ]}]{equation*}      \begin{array}{c}z(x)=\cfrac{k}{f(x)} \\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] z'(x)=\cfrac{-k\cdot f'(x)}{\bigl(f(x)\bigr)^2}\end{array} \end{empheq}

Exemplo 3

Neste exercício, derivaremos um quociente de dois polinômios:

f(x)=\cfrac{x^3+4x^2}{5x^2-8}

Para resolver a derivada, devemos aplicar a regra para a derivada de um quociente de duas funções diferentes, que é a seguinte:

\begin{array}{c}z(x)=\cfrac{f(x)}{g(x)}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] z'(x)=\cfrac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\bigl(g(x)\bigr)^2}\end{array}

Agora vamos encontrar a derivada do polinômio do numerador e do polinômio do denominador:

\cfrac{d}{dx}\ (x^3+4x^2)=3x^2+8x

\cfrac{d}{dx}\ (5x^2-8)=10x

A derivada da divisão dos polinônimos é, portanto:

\begin{array}{c}f(x)=\cfrac{x^3+4x^2}{5x^2-8}\\[2.5ex]\color{orange}\bm{\downarrow}\\[1.5ex] f'(x)=\cfrac{(3x^2+8x)\cdot (5x^2-8)-(x^3+4x^2)\cdot 10x}{\left(5x^2-8\right)^2}\end{array}

E por fim, realizamos as operações e simplificamos ao máximo a fração:

\begin{aligned}f'(x)&=\cfrac{(3x^2+8x)\cdot (5x^2-8)-(x^3+4x^2)\cdot 10x}{\left(5x^2-8\right)^2}\\[2ex]&=\cfrac{15x^4-24x^2+40x^3-64x-10x^4-40x^3}{25x^4+64-80x^2}\\[2ex]&=\cfrac{5x^4-24x^2-64x}{25x^4-80x^2+64}\end{aligned}

Exercícios resolvidos sobre a derivada de um quociente

Derive as seguintes divisões de funções:

\text{A) }f(x)=\cfrac{9x^2+5x}{6x^3}

\text{B) }f(x)=\cfrac{19}{2x^2-2}

\text{C) }f(x)=\cfrac{8x^3-4x^2+3x}{e^{4x}}

\text{D) }f(x)=\cfrac{\text{cos}(x^2)}{\text{sen}(6x)}

\text{E) }f(x)=\cfrac{\ln(x^3+4)}{\left(4x^2-3x\right)^3}

\text{F) }f(x)=\cfrac{\sqrt{x^2+4x}}{5^{x^2}}

\begin{aligned}\text{A) }f'(x)&=\cfrac{(18x+5)\cdot 6x^3-(9x^2+5x)\cdot 18x^2}{\left(6x^3\right)^2}\\[1.5ex]&=\cfrac{108x^4+30x^3-162x^4-90x^3}{36x^6}\\[1.5ex]&=\cfrac{-54x^4-60x^3}{36x^6}\\[1.5ex]&=\cfrac{-9x-10}{6x^3}\end{aligned}

\text{B) }f'(x)=\cfrac{-19\cdot 4x}{\left(2x^2-2\right)^2}=\cfrac{-76x}{\left(2x^2-2\right)^2}

\begin{aligned}\text{C) }f'(x)&=\cfrac{(24x^2-8x+3)e^{4x}-(8x^3-4x^2+3x)\cdot 4e^{4x}}{\left(e^{4x}\right)^2}\\[1.5ex]&=\cfrac{e^{4x}(24x^2-8x+3-32x^3+16x^2-12x)}{e^{8x}}\\[1.5ex]&=\cfrac{-32x^3+40x^2-20x+3}{e^{4x}}\end{aligned}

\text{D) }f'(x)=\cfrac{-2x\text{sen}(x^2)\cdot\text{sen}(6x)-\text{cos}(x^2)\text{cos}(6x)\cdot 6}{\text{sen}^2(6x)}

\begin{aligned}\text{E) }f'(x)&=\cfrac{\cfrac{3x^2}{x^3+4}\cdot\left(4x^2-3x\right)^3-\ln(x^3+4)\cdot 3\left(4x^2-3x\right)^2\cdot (8x-3) }{\left(\left(4x^2-3x\right)^3\right)^2}\\[1.5ex]&=\cfrac{\cfrac{3x^2}{x^3+4}\cdot\left(4x^2-3x\right)^3-\ln(x^3+4)\cdot 3\left(4x^2-3x\right)^2\cdot (8x-3) }{\left(4x^2-3x\right)^6}\end{aligned}

\begin{aligned}\text{F) }f'(x)&=\cfrac{\cfrac{2x+4}{2\sqrt{x^2+4x}}\cdot 5^{x^2} - \sqrt{x^2+4x}\cdot 5^{x^2}\cdot \ln(5) \cdot 2x }{\left(5^{x^2}\right)^2}\\[1.5ex]&=\cfrac{\cfrac{2x+4}{2\sqrt{x^2+4x}}\cdot 5^{x^2} - \sqrt{x^2+4x}\cdot 5^{x^2}\cdot \ln(5) \cdot 2x }{5^{2x^2}}\end{aligned}

Demonstração da derivada de um quociente

Por fim, demonstraremos a fórmula da derivada de uma divisão. Para fazer isso, usaremos a definição geral de derivada, que é:

\displaystyle f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}

Seja z uma divisão de duas funções diferentes:

z(x)=\cfrac{f(x)}{g(x)}

Então, a derivada da função z aplicando a definição matemática será:

\displaystyle f'(x)=\lim_{h \to 0}\frac{\cfrac{f(x+h)}{g(x+h)}-\cfrac{f(x)}{g(x)}}{h}

Resolvemos a subtração de frações do numerador da fração:

\displaystyle f'(x)=\lim_{h \to 0}\frac{\cfrac{f(x+h)\cdot g(x)}{g(x+h)\cdot g(x)}-\cfrac{f(x)\cdot g(x+h)}{g(x)\cdot g(x+h)}}{h}

\displaystyle f'(x)=\lim_{h \to 0}\frac{f(x+h)\cdot g(x)-f(x)\cdot g(x+h)}{h\cdot g(x)\cdot g(x+h)}

Adicionar um termo de adição e subtração a uma equação não altera a equação. Podemos, portanto, passar para a próxima etapa:

\displaystyle f'(x)=\lim_{h \to 0}\frac{f(x+h)\cdot g(x)\color{orange}\bm{-f(x)\cdot g(x)}\color{black}-f(x)\cdot g(x+h)\color{orange}\bm{+f(x)\cdot g(x)}\color{black}}{h\cdot g(x)\cdot g(x+h)}

Extraímos o fator comum:

\displaystyle f'(x)=\lim_{h \to 0}\frac{g(x)\bigl[f(x+h)-f(x)\bigr]-f(x)\bigl[g(x+h)-g(x)\bigr]}{h\cdot g(x)\cdot g(x+h)}

Agora vamos mover o termo h do denominador para o numerador usando as propriedades das frações:

\displaystyle f'(x)=\lim_{h \to 0}\frac{g(x)\cdot \cfrac{f(x+h)-f(x)\cdot g(x)}{h}-f(x)\cdot\cfrac{g(x+h)-g(x)}{h}}{g(x)\cdot g(x+h)}

Transformamos a equação aplicando as propriedades dos limites:

\displaystyle f'(x)=\frac{g(x)\cdot \displaystyle\lim_{h \to 0}\cfrac{f(x+h)-f(x)\cdot g(x)}{h}-f(x)\cdot\lim_{h \to 0}\cfrac{g(x+h)-g(x)}{h}}{g(x)\cdot \displaystyle\lim_{h \to 0}g(x+h)}

Os limites do numerador correspondem justamente à definição matemática da derivada de cada função, portanto:

\displaystyle f'(x)=\frac{g(x)\cdot f'(x)-f(x)\cdot g'(x)}{g(x)\cdot \displaystyle\lim_{h \to 0}g(x+h)}

Resolvemos o limite do denominador da fração:

\displaystyle f'(x)=\frac{g(x)\cdot f'(x)-f(x)\cdot g'(x)}{g(x)\cdot g(x)}

E assim é demonstrada a fórmula para a derivada de um quociente de duas funções:

\displaystyle f'(x)=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\bigl(g(x)\bigr)^2}

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima