Autovalores (ou autovalores) e autovetores (ou autovetores) de uma matriz

Nesta página explicamos o que são autovalores e autovetores, também chamados de autovalores e autovetores respectivamente. Você também encontrará exemplos de como calculá-los, bem como exercícios resolvidos passo a passo para praticar.

O que é um autovalor e um autovetor?

Embora a noção de autovalor e autovetor seja difícil de entender, sua definição é a seguinte:

Autovetores ou autovetores são os vetores diferentes de zero de uma aplicação linear que, ao serem transformados por ela, dão origem a um múltiplo escalar deles (não mudam de direção). Este escalar é o autovalor ou autovalor .

Av = \lambda v

Ouro

A

é a matriz do mapa linear,

v

é o autovetor e

\lambda

próprio valor.

O autovalor também é conhecido como valor característico. E há até matemáticos que usam a raiz alemã “eigen” para designar autovalores e autovetores: autovalores para autovalores e autovetores para autovetores.

Como calcular os autovalores (ou autovalores) e os autovetores (ou autovetores) de uma matriz?

Para encontrar os autovalores e autovetores de uma matriz, você deve seguir todo um procedimento:

  1. A equação característica da matriz é calculada resolvendo o seguinte determinante:
  2. \displaystyle \text{det}(A-\lambda I)

  3. Encontramos as raízes do polinômio característico obtido na etapa 1. Essas raízes são os autovalores da matriz.
  4. \displaystyle \text{det}(A-\lambda I)=0 \ \longrightarrow \ \lambda

  5. O autovetor de cada autovalor é calculado. Para fazer isso, o seguinte sistema de equações é resolvido para cada autovalor:
  6. \displaystyle (A-\lambda I)v=0

Este é o método para encontrar os autovalores e autovetores de uma matriz, mas aqui também damos algumas dicas: 😉

Dicas : podemos aproveitar as propriedades dos autovalores e autovetores para calculá-los mais facilmente:

O traço da matriz (soma da sua diagonal principal) é igual à soma de todos os autovalores.

\displaystyle tr(A)=\sum_{i=1}^n \lambda_i

O produto de todos os autovalores é igual ao determinante da matriz.

\displaystyle det(A)=\prod_{i=1}^n \lambda_i

Se houver combinação linear entre linhas ou colunas, pelo menos um autovalor da matriz é igual a 0.

Vejamos um exemplo de como os autovetores e autovalores de uma matriz são calculados para entender melhor o método:

Exemplo de cálculo de autovalores e autovetores de uma matriz:

  • Encontre os autovalores e autovetores da seguinte matriz:

\displaystyle A= \begin{pmatrix}1&0\\[1.1ex] 5&2\end{pmatrix}

Primeiro, precisamos encontrar a equação característica da matriz. E, para isso, deve-se resolver o seguinte determinante:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1- \lambda &0\\[1.1ex] 5&2-\lambda \end{vmatrix} = \lambda^2-3\lambda +2

Agora calculamos as raízes do polinômio característico, portanto igualamos o resultado obtido a 0 e resolvemos a equação:

\displaystyle \lambda^2-3\lambda +2 = 0

\lambda= \cfrac{-(-3)\pm \sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot 1} = \cfrac{+3\pm 1}{2}=\begin{cases} \lambda = 1 \\[2ex] \lambda = 2 \end{cases}

As soluções da equação são os autovalores da matriz.

Assim que tivermos os autovalores, calculamos os autovetores. Para fazer isso, precisamos resolver o seguinte sistema para cada autovalor:

\displaystyle (A-\lambda I)v=0

Calcularemos primeiro o autovetor associado ao autovalor 1:

\displaystyle (A-\lambda I)v=0

\displaystyle (A-1 I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \begin{pmatrix}0&0\\[1.1ex] 5&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} 0x+0y = 0 \\[2ex] 5x+y = 0\end{array}\right\}

A partir dessas equações obtemos o seguinte subespaço:

\displaystyle y=-5x

Os subespaços de vetores próprios também são chamados de espaços próprios.

Agora temos que encontrar uma base para esse espaço limpo, então damos por exemplo o valor 1 para a variável

x

e obtemos o seguinte autovetor:

\displaystyle x = 1 \ \longrightarrow \ y=-5\cdot 1 = -5

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] -5\end{pmatrix}

Finalmente, uma vez encontrado o autovetor associado ao autovalor 1, repetimos o processo para calcular o autovetor para o autovalor 2:

\displaystyle (A-\lambda I)v=0

\displaystyle (A-2I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \begin{pmatrix}-1&0\\[1.1ex] 5&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -x+0y = 0 \\[2ex] 5x+0y = 0\end{array}\right\} \longrightarrow \ x=0

Neste caso, apenas a primeira componente do vetor deve ser 0, então podemos atribuir qualquer valor a

y

. Mas para facilitar é melhor colocar 1:

\displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}

Concluindo, os autovalores e autovetores da matriz são:

\displaystyle \lambda = 1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -5 \end{pmatrix}

\displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}

Depois de saber como encontrar os autovalores e autovetores de uma matriz, você pode se perguntar… e para que servem eles? Bem, acontece que eles são muito úteis para diagonalização de matrizes , na verdade essa é sua principal aplicação. Para saber mais, recomendamos conferir como diagonalizar uma matriz com o link, onde o procedimento é explicado passo a passo e também há exemplos e exercícios resolvidos para praticar.

Exercícios resolvidos sobre autovalores e autovetores (autovalores e autovetores)

Exercício 1

Calcule os autovalores e autovetores da seguinte matriz quadrada de ordem 2:

\displaystyle A= \begin{pmatrix}3&1\\[1.1ex] 2&4\end{pmatrix}

Primeiro calculamos o determinante da matriz menos λ em sua diagonal principal:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}3- \lambda &1\\[1.1ex] 2&4-\lambda \end{vmatrix} = \lambda^2-7\lambda +10

Agora vamos calcular as raízes do polinômio característico:

\displaystyle \lambda^2-7\lambda +10=0 \ \longrightarrow \ \begin{cases} \lambda = 2 \\[2ex] \lambda = 5 \end{cases}

Calculamos o autovetor associado ao autovalor 2:

\displaystyle (A- 2I)v=0

\displaystyle \begin{pmatrix}1&1\\[1.1ex] 2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} x+y = 0 \\[2ex] 2x+2y = 0\end{array}\right\} \longrightarrow \ x=-y

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}

E então calculamos o autovetor associado ao autovalor 5:

\displaystyle (A-5I)v=0

\displaystyle \begin{pmatrix}-2&1\\[1.1ex] 2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -2x+y = 0 \\[2ex] 2x-y = 0\end{array}\right\} \longrightarrow \ y=2x

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = 2 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}

\displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 2 \end{pmatrix}

Exercício 2

Determine os autovalores e autovetores da seguinte matriz quadrada 2×2:

\displaystyle A= \begin{pmatrix}2&1\\[1.1ex] 3&0\end{pmatrix}

Primeiro calculamos o determinante da matriz menos λ em sua diagonal principal para obter a equação característica:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2- \lambda &1\\[1.1ex] 3&-\lambda \end{vmatrix} = \lambda^2-2\lambda -3

Agora vamos calcular as raízes do polinômio característico:

\displaystyle \lambda^2-2\lambda -3=0 \ \longrightarrow \ \begin{cases} \lambda = -1 \\[2ex] \lambda = 3 \end{cases}

Calculamos o autovetor associado ao autovalor -1:

\displaystyle (A-(-1)I)v=0

\displaystyle (A+1I)v=0

\displaystyle \begin{pmatrix} 3&1\\[1.1ex] 3&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} 3x+1y = 0 \\[2ex] 3x+1y = 0\end{array}\right\} \longrightarrow \ y=-3x

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}

E então calculamos o autovetor associado ao autovalor 3:

\displaystyle (A-3I)v=0

\displaystyle \begin{pmatrix}-1&1\\[1.1ex] 3&-3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -1x+1y = 0 \\[2ex] 3x-3y = 0\end{array}\right\} \longrightarrow \ y=x

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = -1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}

\displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \end{pmatrix}

Exercício 3

Determine os autovalores e os autovetores da seguinte matriz de ordem 3:

\displaystyle A= \begin{pmatrix}1&2&0\\[1.1ex] 2&1&0\\[1.1ex] 0&1&2\end{pmatrix}

Devemos primeiro resolver o determinante da matriz A menos a matriz identidade multiplicada por lambda para obter a equação característica:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}

Neste caso, a última coluna do determinante possui dois zeros, então aproveitaremos isso para calcular o determinante por cofatores (ou complementos) através desta coluna:

\displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}& = (2-\lambda)\cdot  \begin{vmatrix}1-\lambda&2\\[1.1ex] 2&1-\lambda \end{vmatrix} \\[3ex] & = (2-\lambda)[\lambda^2 -2\lambda -3] \end{aligned}

Agora precisamos calcular as raízes do polinômio característico. É melhor não multiplicar os parênteses porque assim obteríamos um polinômio de terceiro grau, por outro lado se os dois fatores forem resolvidos separadamente é mais fácil obter os autovalores:

\displaystyle (2-\lambda)[\lambda^2 -2\lambda -3]=0 \ \longrightarrow \ \begin{cases} 2-\lambda=0 \ \longrightarrow \ \lambda = 2 \\[2ex] \lambda^2 -2\lambda -3=0 \ \longrightarrow \begin{cases}\lambda = -1 \\[2ex] \lambda = 3 \end{cases} \end{cases}

Calculamos o autovetor associado ao autovalor 2:

\displaystyle (A-2I)v=0

\displaystyle \begin{pmatrix} -1&2&0\\[1.1ex] 2&-1&0\\[1.1ex] 0&1&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -x+2y = 0 \\[2ex] 2x-y = 0\\[2ex] y=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=0 \\[2ex] x=y=0 \end{array}

\displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}

Calculamos o autovetor associado ao autovalor -1:

\displaystyle (A+I)v=0

\displaystyle \begin{pmatrix} 2&2&0\\[1.1ex] 2&2&0\\[1.1ex] 0&1&3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} 2x+2y = 0 \\[2ex] 2x+2y = 0\\[2ex] y+3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-3z \end{array}

\displaystyle v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}

Calculamos o autovetor associado ao autovalor 3:

\displaystyle (A-3I)v=0

\displaystyle \begin{pmatrix} -2&2&0\\[1.1ex] 2&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -2x+2y = 0 \\[2ex] 2x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=y \\[2ex] y=z \end{array}

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}

\displaystyle \lambda = -1 \qquad v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}

\displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}

Exercício 4

Calcule os autovalores e autovetores da seguinte matriz quadrada 3×3:

\displaystyle A= \begin{pmatrix}2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}

Primeiro resolvemos o determinante da matriz menos λ em sua diagonal principal para obter a equação característica:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&1&3\\[1.1ex]-1&1-\lambda&1\\[1.1ex] 1&2&4-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-10\lambda

Extraímos um fator comum do polinômio característico e resolvemos λ de cada equação:

\displaystyle \lambda(-\lambda^2+7\lambda-10)=0 \ \longrightarrow \ \begin{cases} \lambda=0\\[2ex] -\lambda^2+7\lambda-10=0 \ \longrightarrow \begin{cases}\lambda = 2 \\[2ex] \lambda = 5 \end{cases} \end{cases}

Calculamos o autovetor associado ao autovalor 0:

\displaystyle (A-0I)v=0

\displaystyle \begin{pmatrix} 2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} 2x+y+3z= 0 \\[2ex] -x+y+z= 0\\[2ex] x+2y+4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-\cfrac{2z}{3} \\[4ex] y=-\cfrac{5z}{3} \end{array}

\displaystyle v = \begin{pmatrix}-2 \\[1.1ex] -5\\[1.1ex] 3\end{pmatrix}

Calculamos o autovetor associado ao autovalor 2:

\displaystyle (A-2I)v=0

\displaystyle \begin{pmatrix} 0&1&3\\[1.1ex]-1&-1&1\\[1.1ex] 1&2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} y+3z = 0 \\[2ex] -x-y+z= 0\\[2ex] x+2y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-3z \\[2ex] x=4z \end{array}

\displaystyle v = \begin{pmatrix}4\\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}

Calculamos o autovetor associado ao autovalor 5:

\displaystyle (A-5I)v=0

\displaystyle \begin{pmatrix} -3&1&3\\[1.1ex]-1&-4&1\\[1.1ex] 1&2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -3x+y+3z = 0 \\[2ex] -x-4y+z = 0\\[2ex] x+2y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=z \\[2ex] y=0 \end{array}

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = 0 \qquad v = \begin{pmatrix}-2 \\[1.1ex] -5 \\[1.1ex] 3\end{pmatrix}

\displaystyle \lambda = 2 \qquad v = \begin{pmatrix}4 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}

\displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}

Exercício 5

Calcule os autovalores e autovetores da seguinte matriz 3×3:

\displaystyle A= \begin{pmatrix}2&2&2\\[1.1ex] 1&2&0\\[1.1ex] 0&1&3\end{pmatrix}

Primeiro resolvemos o determinante da matriz menos λ em sua diagonal principal para obter a equação característica:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&2&2\\[1.1ex] 1&2-\lambda&0\\[1.1ex] 0&1&3-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-14\lambda+8

Encontramos uma raiz do polinômio característico ou do polinômio mínimo usando a regra de Ruffini:

\displaystyle \begin{array}{r|rrrr} & -1&7&-14&8 \\[2ex] 1 & & -1&6&-8 \\ \hline &-1\vphantom{\Bigl)}&6&-8&0 \end{array}

E então encontramos as raízes do polinômio obtido:

\displaystyle -\lambda^2+6\lambda -8=0 \ \longrightarrow \ \begin{cases} \lambda =2 \\[2ex] \lambda = 4 \end{cases}

Portanto, os autovalores da matriz são:

\lambda=1 \qquad \lambda =2 \qquad \lambda = 4

Calculamos o autovetor associado ao autovalor 1:

\displaystyle (A-1I)v=0

\displaystyle \begin{pmatrix} 1&2&2\\[1.1ex] 1&1&0\\[1.1ex] 0&1&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} x+2y+2z= 0 \\[2ex] x+y= 0\\[2ex] y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-2z \end{array}

\displaystyle v = \begin{pmatrix}2 \\[1.1ex] -2\\[1.1ex] 1\end{pmatrix}

Calculamos o autovetor associado ao autovalor 2:

\displaystyle (A-2I)v=0

\displaystyle \begin{pmatrix} 0&2&2\\[1.1ex] 1&0&0\\[1.1ex] 0&1&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} 2y+2z = 0 \\[2ex] x= 0\\[2ex] y+z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-z \\[2ex] x=0\end{array}

\displaystyle v = \begin{pmatrix}0\\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}

Calculamos o autovetor associado ao autovalor 4:

\displaystyle (A-4I)v=0

\displaystyle \begin{pmatrix} -2&2&2\\[1.1ex] 1&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}

\displaystyle \left.\begin{array}{l} -2x+2y+2z = 0 \\[2ex] x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=2y \\[2ex] y=z \end{array}

\displaystyle v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = 1 \qquad v = \begin{pmatrix}2\\[1.1ex] -2 \\[1.1ex] 1\end{pmatrix}

\displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}

\displaystyle \lambda = 4 \qquad v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}

Exercício 6

Encontre os autovalores e autovetores da seguinte matriz 4×4:

\displaystyle A=\begin{pmatrix}1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}

Devemos primeiro resolver o determinante da matriz menos λ na sua diagonal principal para obter a equação característica:

\displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}

Neste caso, a última coluna do determinante contém apenas zeros exceto um elemento, portanto aproveitaremos isso para calcular o determinante por cofatores através desta coluna:

\displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}& = (3-\lambda)\cdot  \begin{vmatrix}1-\lambda&0&-1\\[1.1ex] 2&-1-\lambda&-3\\[1.1ex] -2&0&2-\lambda\end{vmatrix} \\[3ex] & = (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda] \end{aligned}

Devemos agora calcular as raízes do polinômio característico. É melhor não multiplicar os parênteses porque assim obteríamos um polinômio de quarto grau, por outro lado se os dois fatores forem resolvidos separadamente é mais fácil calcular os autovalores:

\displaystyle (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda]=0 \ \longrightarrow \ \begin{cases} 3-\lambda=0 \ \longrightarrow \ \lambda = 3 \\[2ex] -\lambda^3 +2\lambda^2 +3\lambda =0 \ \longrightarrow \ \lambda(-\lambda^2 +2\lambda +3) =0 \end{cases}

\displaystyle \lambda(-\lambda^2 +2\lambda +3)=0 \ \longrightarrow \ \begin{cases} \lambda=0  \\[2ex] -\lambda^2 +2\lambda +3=0 \ \longrightarrow \ \begin{cases} \lambda=-1 \\[2ex] \lambda = 3 \end{cases}\end{cases}

Calculamos o autovetor associado ao autovalor 0:

\displaystyle (A-0I)v=0

\displaystyle \begin{pmatrix} 1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}

\displaystyle \left.\begin{array}{l} w-y = 0 \\[2ex] 2w-x-3y = 0\\[2ex] -2w+2y=0 \\[2ex] 3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} w=y \\[2ex] x=-w  \\[2ex]z=0 \end{array}

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1  \\[1.1ex]0 \end{pmatrix}

Calculamos o autovetor associado ao autovalor -1:

\displaystyle (A+1I)v=0

\displaystyle \begin{pmatrix} 2&0&-1&0\\[1.1ex] 2&0&-3&0\\[1.1ex] -2&0&3&0\\[1.1ex] 0&0&0&4\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}

\displaystyle \left.\begin{array}{l} 2w-y = 0 \\[2ex] 2w-3y = 0\\[2ex] -2w+3y=0 \\[2ex] 4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=w=0  \\[2ex]z=0 \end{array}

\displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0  \\[1.1ex]0 \end{pmatrix}

Calculamos o autovetor associado ao autovalor 3:

\displaystyle (A-3I)v=0

\displaystyle \begin{pmatrix} -2&0&-1&0\\[1.1ex] 2&-4&-3&0\\[1.1ex] -2&0&-1&0\\[1.1ex] 0&0&0&0\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}

\displaystyle \left.\begin{array}{l} -2w-y = 0 \\[2ex] 2w-4x-3y = 0\\[2ex] -2w-y=0 \\[2ex] 0=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-2w \\[2ex] x=2w  \end{array}

\displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2  \\[1.1ex]0 \end{pmatrix}

O autovalor 3 tem multiplicidade igual a 2, pois se repete duas vezes. Devemos, portanto, encontrar outro autovetor que satisfaça as mesmas equações:

\displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0  \\[1.1ex]1 \end{pmatrix}

Portanto, os autovalores e autovetores da matriz A são:

\displaystyle \lambda = 0 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1  \\[1.1ex]0\end{pmatrix}

\displaystyle \lambda = -1 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0  \\[1.1ex]0 \end{pmatrix}

\displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2  \\[1.1ex]0\end{pmatrix}

\displaystyle \lambda = 3 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0  \\[1.1ex]1\end{pmatrix}

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima