Nesta página você aprenderá o que são equações matriciais e como resolvê-las. Além disso, você encontrará exemplos e exercícios resolvidos de equações com matrizes.
O que são equações matriciais?
As equações matriciais são como as equações normais, mas em vez de serem compostas de números, são compostas de matrizes. Por exemplo:
![]()
Portanto, a solução X também será uma matriz.
Como você já sabe, as matrizes não podem ser divididas. Portanto, a matriz X não pode ser apagada dividindo a matriz que a multiplicou no outro lado da equação:
![]()
Pelo contrário, para limpar a matriz X, todo um procedimento deve ser seguido. Então vamos ver como resolver equações matriciais com um exercício resolvido:
Como resolver equações matriciais. Exemplo:
- Resolva a seguinte equação matricial:
![]()
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9727c78818a9661573310f22ec2fb3cf_l3.png)
A primeira coisa que precisamos fazer é resolver a matriz X. Portanto, subtraímos a matriz B do outro lado da equação:
![]()
![]()
Para terminar a limpeza, a matriz não pode ser dividida. Mas devemos fazer o seguinte:
Devemos multiplicar ambos os lados da equação pelo inverso da matriz que multiplica a matriz X e, além disso, multiplicar ambos os lados pelo lado onde se encontra a referida matriz.
Nesse caso, a matriz que multiplica X é A e está à esquerda dela. Portanto, multiplicamos pela esquerda ambos os lados da equação pelo inverso de A (A -1 ):
![]()
![]()
Uma matriz multiplicada por sua inversa é igual à matriz identidade. Ainda
![]()
![]()
Qualquer matriz multiplicada pela matriz identidade dá a mesma matriz. Ainda:
![]()
E desta forma já apagamos X. Agora é só fazer as operações com matrizes. Então, primeiro calculamos a matriz inversa 2 × 2 de A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b79c0ae6349ac5ac0267e179e641b66e_l3.png)
![]()
Calculamos o adjunto da matriz A:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1eb7c7a828453c5310d59386f0303b83_l3.png)
E uma vez encontrada a matriz adjunta, procedemos ao cálculo da matriz transposta para determinar a matriz inversa:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aa12c355319a6894e76343c9cb9185d3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a2fd06e0ad4a2a18560f644b718dadf4_l3.png)
Agora substituímos todas as matrizes na expressão para calcular X:
![]()
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-99716e9accb7ee578fb1119d4e800e4f_l3.png)
E procedemos à resolução das operações com matrizes. Primeiro calculamos os parênteses subtraindo as matrizes:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d07c28ad6104e391605836ecdd297251_l3.png)
E, finalmente, multiplicamos as matrizes:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b28076f6ab18dc77a0083388046c5cd1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7d20e85150a382ba9f11bf328b866834_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3e7ebae094a92690d97b614b0487a4_l3.png)
Problemas resolvidos de equações matriciais
Para que você possa praticar e assim entender bem o conceito, deixamos abaixo várias equações matriciais resolvidas. Você pode tentar fazer os exercícios e ver se conseguiu as soluções. Não se esqueça que você também pode nos tirar qualquer dúvida que surgir nos comentários.
Exercício 1
Ser
![]()
E
![]()
as seguintes matrizes quadradas de dimensão 2×2:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f40b96fc0f1047fb0c39a7d41be04ea_l3.png)
Calcule a matriz
![]()
que satisfaz a seguinte equação matricial:
![]()
Você deve primeiro esvaziar a matriz
![]()
da equação matricial:
![]()
![]()
![]()
![]()
Assim que tivermos a matriz
![]()
claro, basta operar com as matrizes. Portanto, primeiro calculamos a matriz inversa de A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2fb5c4785b78010fcac56e1189338b99_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7c4d4a6bfca6d2eedde52937c8ee0917_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-695a05e4176ced4a4beaec27ce201b4a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a12ae8d0ae9ce16f04540ecd1a0ac907_l3.png)
Agora substituímos todas as matrizes na equação para calcular a matriz
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-92d5f580fddfc830181cde2e67013987_l3.png)
E, por fim, fazemos a multiplicação das matrizes:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-787643b41cb362e276b8f80c9211fb52_l3.png)
Exercício 2
Ser
![]()
,
![]()
E
![]()
as seguintes matrizes de ordem 2:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f4f1f244d15039c64282a9fe347cee4_l3.png)
Calcule a matriz
![]()
que satisfaz a seguinte equação matricial:
![]()
A primeira coisa que precisamos fazer é esvaziar a matriz.
![]()
da equação matricial:
![]()
![]()
![]()
![]()
![]()
Depois de isolarmos a matriz
![]()
, é necessário operar com matrizes. Portanto, primeiro calculamos a matriz inversa de B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-33c4a446ecdc391935728843e6a34964_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4850852b0e29a3d530b32dc1cd635499_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8817da5e89bc39e89bd17390cfd61c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a5fc342354f6410cb87fa6b0ddf833a4_l3.png)
Agora substituímos todas as matrizes na equação para calcular a matriz
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-79abf2abf8a29e6357f65a1b62c9a80f_l3.png)
Resolvemos os parênteses subtraindo as matrizes:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f5141a4cb61be8db15676e185b10767f_l3.png)
E, finalmente, multiplicamos as matrizes:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1d5482b1eb8fd6af1d6c61547b05c0bc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-779a021183e139f0e138fbc288d4adea_l3.png)
Exercício 3
Ser
![]()
,
![]()
E
![]()
as seguintes matrizes de segunda ordem:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6292882d305055e4e8fb287a4bc93b71_l3.png)
encontre a matriz
![]()
que satisfaz a seguinte equação matricial:
![]()
Primeiro precisamos limpar a matriz
![]()
da equação matricial:
![]()
![]()
![]()
![]()
Depois de esvaziarmos a matriz
![]()
, é necessário operar com matrizes. Portanto, primeiro calculamos a matriz inversa de A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b09ce42998b548267e70e47b135b6508_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2a29b310de613bc1ec42a6e1452db147_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c0e0b895fed20ba908417f6ee3482ce0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c19685457cd40098cadf6eeff41405d5_l3.png)
E também invertemos a matriz B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d3f5048394796b2378c8197c9c9c1cb7_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-261eb432e305f5df596fc1dff9f183d7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-96d40ae8aa7c350c8a63d57d06b6fa6d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-80ee47f61b0671b42f9df06e7f384847_l3.png)
Agora substituímos todas as matrizes na expressão para calcular a matriz
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-de94e47503b17f761f7fcb764f4def59_l3.png)
Primeiro resolvemos a multiplicação à esquerda
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ca95f4870d5be13a3f7e241e5a40934b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3df7709b9d5c5f5194744d4c88d2cb66_l3.png)
E, por fim, fazemos a multiplicação restante:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d83b02b8768a7e95ee71b7782d7759_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4b3a393915b3c49bdf9dd9ee6ada5020_l3.png)
Exercício 4
Ser
![]()
E
![]()
as seguintes matrizes de dimensão 3×3:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da8b3d05ecc85eea72fd7d14c282f58c_l3.png)
Calcule a matriz
![]()
que satisfaz a seguinte equação matricial:
![]()
Primeiro limpamos a matriz
![]()
da equação matricial:
![]()
![]()
![]()
![]()
![]()
![]()
Depois de isolarmos a matriz
![]()
, é necessário operar com matrizes. Portanto, primeiro calculamos a matriz inversa de A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1a92fa898838b531bf1b51356dbbb2de_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\ -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 1\\ 0 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9cc1a5bb552d5eadacef8677265cba0a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1 & 0 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e668ed3a6e233bed8245f99e80638633_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1 & -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeb999734b9ba4b6e9a01e788bee6649_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f8f2379d6d616b29b78005aaafe39f29_l3.png)
Agora substituímos todas as matrizes na expressão para calcular X:
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-c91b944756316c7cde33eb90743d54d6_l3.png)
Transpomos a matriz B:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-3a81f0c3d7367d756d53221e9c56d1e3_l3.png)
Resolvemos os parênteses subtraindo matrizes:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5f822e84288230368a5c0918c79398bf_l3.png)
E por fim, fazemos a multiplicação de matrizes:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3} & \bm{-6} & \bm{9} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-552e3809229102041ddf02a78badfea0_l3.png)