Calcule a excentricidade da elipse

Nesta página você encontrará o significado da excentricidade da elipse e como ela é calculada (fórmula). Além disso, você verá exemplos de cálculos de excentricidade de elipse.

Qual é a excentricidade da elipse?

A excentricidade da elipse é um parâmetro que mede o quão redonda ou achatada é uma elipse, ou seja, a excentricidade de uma elipse indica o quanto a elipse se assemelha a um círculo.

Por outro lado, lembremos também em que consiste uma elipse: a elipse é o lugar geométrico de todos os pontos de um plano cuja soma das distâncias a dois outros pontos fixos (chamados focos F e F’) é constante.

Fórmula de excentricidade da elipse

Depois de vermos a definição da excentricidade da elipse, vamos ver como ela é calculada a partir de sua fórmula:

A fórmula para a excentricidade da elipse é a seguinte:

e=\cfrac{c}{a}

Ouro:

  • e

    é a excentricidade da elipse

  • c

    é a distância de um foco (pontos F e F’) da elipse ao seu centro

  • a

    é o comprimento do semieixo maior (ou maior) da elipse.

fórmula para a excentricidade de uma elipse

Lembre-se de que os focos de uma elipse são os pontos fixos cuja soma das distâncias a qualquer ponto da elipse é constante. Além disso, a distância entre os dois pontos focais é chamada de distância focal.

O valor da excentricidade varia de zero, o que significa que é um círculo perfeito, a um, o que significa que é uma linha horizontal. Obviamente 0 e 1 não estão incluídos porque os objetos geométricos resultantes não são mais elipses.

0 Par conséquent, comme vous pouvez le voir dans la représentation graphique ci-dessous, plus la valeur de l'excentricité de l'ellipse est petite, plus elle ressemble à un cercle, au contraire, plus le coefficient est grand, plus l'ellipse est aplatie. 

<div class="wp-block-image">
<figure class="aligncenter size-large is-resized"><img decoding="async" loading="lazy" src="https://mathority.org/wp-content/uploads/2023/07/excentricite-dellipse.webp" alt="valeur de l'excentricité de l'ellipse" class="wp-image-2095" width="669" height="154" srcset="" sizes=""></figure>
</div>
<p> En bref, l’excentricité d’une ellipse est un coefficient dont la valeur détermine la forme qu’elle a. </p>
<div class="adsb30" style=" margin:12px; text-align:center">
<div id="ezoic-pub-ad-placeholder-109"></div>
</div>
<p> Si vous êtes plus intéressé par les caractéristiques d’une ellipse, vous pouvez vous référer à l’ <a href="https://mathority.org/equation-de-la-formule-de-l'ellipse/">équation de l’ellipse</a> . Sur cette page, vous trouverez une explication détaillée de ce qu’est une ellipse, de tous ses éléments et de la façon dont son équation est calculée. Et, en plus, vous pourrez voir plusieurs exemples, exercices et problèmes résolus sur des ellipses. </p>
<h2 class="wp-block-heading"><span class="ez-toc-section" id="relacion-importante-para-hallar-la-excentricidad-de-la-elipse"></span> Relation importante pour trouver l’excentricité de l’ellipse<span class="ez-toc-section-end"></span></h2>
<p> Les différents éléments d’une ellipse sont liés les uns aux autres. De plus, les relations entre eux sont très importantes pour les exercices sur les ellipses, car elles sont généralement nécessaires pour résoudre des problèmes sur les ellipses et déterminer leurs équations. Comme nous l’avons vu plus haut dans l’explication de la notion d’excentricité de l’ellipse, la distance de tout point de l’ellipse au foyer F plus la distance du même point au foyer F’ est constante. Eh bien, cette valeur constante est égale à deux fois ce que mesure le demi-grand axe. Autrement dit, l’égalité suivante vaut pour tout point d’une ellipse :” title=”Rendered by QuickLaTeX.com” height=”478″ width=”3899″ style=”vertical-align: -4px;”></p>
<p> d(P,F) + d(P,F’)= 2a</p>
<p class= Où

d(P,F)

et

d(P,F’)

est la distance du point P au foyer F et F' respectivement et

tem

est la longueur de l'axe semi-focal. Par conséquent, puisque le sommet de l'axe secondaire est juste au milieu de l'axe principal, la distance de celui-ci à l'un des foyers est équivalente à la longueur du demi-axe principal (

tem

): 

<div class="wp-block-image">
<figure class="aligncenter size-large is-resized"><img decoding="async" loading="lazy" src="https://mathority.org/wp-content/uploads/2023/07/relation-delements-dellipse.webp" alt="équation de preuve d'ellipse" class="wp-image-2087" width="332" height="197" srcset="" sizes=""></figure>
</div>
<p> Par conséquent, à partir du théorème de Pythagore, il est possible de trouver <strong>la relation qui existe entre le demi-axe principal, le demi-axe secondaire et la distance semi-focale d’une ellipse :</strong>” title=”Rendered by QuickLaTeX.com” height=”195″ width=”582″ style=”vertical-align: -5px;”></p>
<p> a^2=b^2+c^2</p>
<p class= Retenez également cette autre formule car elle vous sera très utile pour calculer le résultat des exercices avec des ellipses. 

<h2 class="wp-block-heading"><span class="ez-toc-section" id="ejemplo-de-como-calcular-la-excentricidad-de-la-elipse"></span> Exemple de calcul de l’excentricité de l’ellipse<span class="ez-toc-section-end"></span></h2>
<p> Vous trouverez ci-dessous un exercice résolu pour voir comment l’excentricité d’une ellipse est calculée :</p>
<ul>
<li> Trouver l’excentricité de l’ellipse dont le demi-grand axe et le demi-grand axe mesurent respectivement 5 et 3 unités.</li>
</ul>
<p> Pour trouver la valeur de l’excentricité de l’ellipse, il faut connaître la longueur du demi-axe principal et la longueur du segment entre un foyer et le centre de l’ellipse. Nous connaissons déjà le premier, nous n’avons donc qu’à déterminer la distance semi-focale. A partir de la formule de la relation entre les éléments d’une ellipse, on peut calculer combien vaut la demi-distance focale : ” title=”Rendered by QuickLaTeX.com” height=”193″ width=”2952″ style=”vertical-align: -5px;”></p>
<p> a^2=b^2+c^2 c^2=a^2-b^2 c=\sqrt{a^2-b^2} = \sqrt{5^2-3^2}=\sqrt {16} = 4</p>
<p class= Et quand on connaît déjà la valeur des termes

tem

et

contra,

Nous pouvons maintenant déterminer l'excentricité de l'ellipse :

e= \cfrac{c}{a} = \cfrac{4}{5} = \bm{0,8} $

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima