Scalaire matrix

Op deze pagina vind je wat een scalaire matrix is en diverse voorbeelden van scalaire matrices zodat het perfect begrepen wordt. Bovendien kunt u alle eigenschappen van scalaire matrices zien en de voordelen van het uitvoeren van bewerkingen ermee. Ten slotte leggen we uit hoe je de determinant van een scalaire matrix kunt berekenen en hoe je dit type matrix kunt omkeren.

Wat is een scalaire matrix?

Een scalaire matrix is een diagonale matrix waarin alle waarden op de hoofddiagonaal gelijk zijn.

Dit is de definitie van een scalaire matrix, maar ik weet zeker dat deze beter wordt begrepen met voorbeelden: 😉

Voorbeelden van scalaire arrays

Voorbeeld van een scalaire matrix van orde 2×2

voorbeeld van een scalaire matrix met dimensie 2x2

Voorbeeld van een 3×3 scalaire matrix

voorbeeld van een scalaire matrix met dimensie 3x3

Voorbeeld van een scalaire matrix van grootte 4×4

voorbeeld van een scalaire matrix met dimensie 4x4

Eigenschappen van scalaire matrices

De scalaire matrix is ook een diagonale matrix, dus je zult zien dat deze veel kenmerken van deze matrixklasse overneemt:

  • Elke scalaire matrix kan worden verkregen uit het product van een identiteitsmatrix en een scalair getal.

4 \cdot \begin{pmatrix} 1 & 0 & 0 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\[1.1ex] 0 & 4 & 0 \\[1.1ex] 0 & 0 & 4 \end{pmatrix}

  • De eigenwaarden (of eigenwaarden) van een scalaire matrix zijn de elementen van de hoofddiagonaal. Daarom zullen hun eigenwaarden altijd hetzelfde zijn en zo vaak worden herhaald als de dimensie van de matrix.

\begin{pmatrix} 8 & 0 & 0 \\[1.1ex] 0 & 8 & 0 \\[1.1ex] 0 & 0 & 8 \end{pmatrix} \longrightarrow \ \lambda = 8 \ ; \ \lambda = 8 \ ; \ \lambda = 8

  • De adjunct van een scalaire matrix is een andere scalaire matrix. En meer nog, de waarden van de hoofddiagonaal van de bijgevoegde matrix zullen altijd die van de originele matrix zijn, verhoogd naar de volgorde van de matrix – 1 .

\displaystyle A=\begin{pmatrix} 5 & 0 & 0 \\[1.1ex] 0 & 5 & 0 \\[1.1ex] 0 & 0 & 5 \end{pmatrix} \longrightarrow \text{Adj}(A)=\begin{pmatrix} 5^{3-1} & 0 & 0 \\[1.1ex] 0 & 5^{3-1} & 0 \\[1.1ex] 0 & 0 & 5^{3-1} \end{pmatrix}= \begin{pmatrix} 25 & 0 & 0 \\[1.1ex] 0 & 25 & 0 \\[1.1ex] 0 & 0 & 25 \end{pmatrix}

Bewerkingen met scalaire matrices

Een van de redenen waarom scalaire matrices zo veel worden gebruikt in de lineaire algebra is het gemak waarmee u berekeningen kunt uitvoeren. Daarom zijn ze zo belangrijk in de wiskunde.

Laten we eens kijken waarom het zo eenvoudig is om berekeningen uit te voeren met dit type vierkante matrix:

Optellen en aftrekken van scalaire matrices

Het optellen (en aftrekken) van twee scalaire matrices is heel eenvoudig: u hoeft alleen maar de getallen op de hoofddiagonalen op te tellen (of af te trekken). Bijvoorbeeld:

\displaystyle \begin{pmatrix} 4 & 0 & 0 \\[1.1ex] 0 & 4 & 0 \\[1.1ex] 0 & 0 & 4 \end{pmatrix} +\begin{pmatrix} 3 & 0 & 0 \\[1.1ex] 0 & 3 & 0 \\[1.1ex] 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7& 0 & 0 \\[1.1ex] 0 & 7 & 0 \\[1.1ex] 0 & 0 & 7 \end{pmatrix}

Scalaire matrixvermenigvuldiging

Net als bij optellen en aftrekken, vermenigvuldigt u eenvoudigweg de elementen van de diagonalen daartussen om een vermenigvuldiging of matrixproduct tussen twee scalaire matrices op te lossen. Bijvoorbeeld:

\displaystyle \begin{pmatrix} 2 & 0 & 0 \\[1.1ex] 0 & 2 & 0 \\[1.1ex] 0 & 0 & 2 \end{pmatrix} \cdot\begin{pmatrix} 6 & 0 & 0 \\[1.1ex] 0 & 6 & 0 \\[1.1ex] 0 & 0 & 6 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\[1.1ex] 0 & 12 & 0 \\[1.1ex] 0 & 0 & 12 \end{pmatrix}

Kracht van scalaire matrices

Het berekenen van de kracht van een scalaire matrix is ook heel eenvoudig: je moet elk element van de diagonaal verheffen tot de exponent. Bijvoorbeeld:

 *** QuickLaTeX cannot compile formula:
\displaystyle\left. \begin{pmatrix} 2 & 0 & 0 \\[1.1ex] 0 & 2 & 0 \\[1.1ex] 0 & 0 & 2 \end{pmatrix}\right.^4=\begin{pmatrix} 2^ 4 & 0 & 0 \\[1.1ex] 0 & 2^

*** Error message:
Missing $ inserted.
leading text: \displaystyle
Missing { inserted.
leading text: \end{document}
\begin{pmatrix} on input line 9 ended by \end{document}.
leading text: \end{document}
Improper \prevdepth.
leading text: \end{document}
Missing $ inserted.
leading text: \end{document}
Missing } inserted.
leading text: \end{document}
Missing } inserted.
leading text: \end{document}
Missing \cr inserted.
leading text: \end{document}
Missing $ inserted.
leading text: \end{document}
You can't use `\end' in internal vertical mode.
leading text: \end{document}
\begin{pmatrix} on input line 9 ended by \end{document}.
leading text: \end{document}
Missing } inserted.
leading text: \end{document}
Missing \right. inserted.
leading text: \end{document}

& 0 \\[1.1ex] 0 & 0 & 2^4 \end{pmatrix}= \begin{pmatrix} 16 & 0 & 0 \\[1.1ex] 0 & 16 & 0 \\[1.1ex] 0 & 0 & 16 \end{pmatrix}



<div class="adsb30" style=" margin:px; text-align:"></div>
<h2 class="wp-block-heading"> Déterminant d’une matrice scalaire</h2>
<p> Calculer le <strong>déterminant d’une matrice scalaire</strong> revient à résoudre le déterminant d’une matrice diagonale : le résultat est le produit des éléments sur la diagonale principale.” title=”Rendered by QuickLaTeX.com” height=”106″ width=”582″ style=”vertical-align: -4px;”></p>
<p> \displaystyle \text{det}(A)= \prod_{i =1}^n a_i</p>
<p class= Regardez l'exercice résolu suivant dans lequel on trouve le déterminant d'une matrice scalaire en multipliant les éléments de sa diagonale principale :

\displaystyle \begin{vmatrix} 7 & 0 & 0 \\[1.1ex] 0 & 7 & 0 \\[1.1ex] 0 & 0 & 7 \end{vmatrix} = 7 \cdot 7 \cdot 7 = \bm {343}

 En fait, puisque tous les éléments de la diagonale principale d'une matrice scalaire sont toujours égaux, pour trouver le résultat du déterminant, il suffit d'augmenter le numéro de la diagonale principale du nombre de fois qu'elle est répétée. Par conséquent, l'exercice précédent peut également être résolu de la manière suivante :

\displaystyle \begin{vmatrix} 7 & 0 & 0 \\[1.1ex] 0 & 7 & 0 \\[1.1ex] 0 & 0 & 7 \end{vmatrix} = 7^3= \bm{343}

 Démontrer ce théorème est très simple : il suffit de calculer le déterminant d'une matrice scalaire par blocs (ou cofacteurs). Vous trouverez ci-dessous la <strong>démonstration</strong> de la formule utilisant une matrice scalaire générique :” title=”Rendered by QuickLaTeX.com” height=”62″ width=”1060″ style=”vertical-align: -4px;”></p>
<p> \begin{uitgelijnd} \begin{vmatrix} a & 0 & 0 \\[1.1ex] 0 & a & 0 \\[1.1ex] 0 & 0 & a \end{vmatrix}& = a \cdot \begin{ vmatrix} a & 0 \\[1.1ex] 0 & a \end{vmatrix} – 0 \cdot \begin{vmatrix} 0 & 0 \\[1.1ex] 0 & a \end{vmatrix} + 0 \cdot \ begin{vmatrix} 0 & a \\[1.1ex] 0 & 0 \end{vmatrix} \\[2ex] & =a \cdot (a\cdot a) – 0 \cdot 0 + 0 \cdot 0 \\[ 2ex] & = a \cdot a \cdot a \\[2ex] & = a^3 \end{uitgelijnd}</p>
<p class= Dans ce cas ça donne

een^3

car la matrice est d'ordre 3, mais il faut toujours l'élever à l'ordre de la matrice. 

<div class="adsb30" style=" margin:12px; text-align:center">
<div id="ezoic-pub-ad-placeholder-118"></div>
</div>
<h2 class="wp-block-heading"> Inverser une matrice scalaire</h2>
<p> Une matrice scalaire <strong>est inversible si, et seulement si, tous les éléments de la diagonale principale sont différents de 0</strong> . Dans ce cas on dit que la matrice scalaire est une matrice régulière. De plus, l’inverse d’une matrice scalaire sera toujours une autre matrice scalaire avec les <strong>inverses</strong> de la diagonale principale :” title=”Rendered by QuickLaTeX.com” height=”174″ width=”1250″ style=”vertical-align: -5px;”></p>
<p> \displaystyle A= \begin{pmatrix} 9 & 0 & 0 \\[1.1ex] 0 & 9 & 0 \\[1.1ex] 0 & 0 & 9 \end{pmatrix} \ \longrightarrow \ A^{-1 }=\begin{pmatrix} \frac{1}{9} & 0 & 0 \\[1.1ex] 0 & \frac{1}{9} & 0 \\[1.1ex] 0 & 0 & \frac{ 1}{9} \end{pmatrix}</p>
<p class= D'autre part, de la caractéristique précédente, on peut déduire que le déterminant d'une matrice scalaire inversée est le résultat de la multiplication des inverses de la diagonale principale :

\displaystyle B= \begin{pmatrix} 2 & 0 & 0 \\[1.1ex] 0 & 2 & 0 \\[1.1ex] 0 & 0 & 2 \end{pmatrix} \displaystyle\left| B^{-1}\right|=\cfrac{1}{2} \cdot \cfrac{1}{2} \cdot \cfrac{1}{2}=\cfrac{1}{8} = $ 0,125

Laat een reactie achter

Je e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

Scroll naar boven