Op deze pagina zullen we zien hoe je matrices met de afmetingen 2×2, 3×3, 4×4, etc. kunt vermenigvuldigen . We leggen de matrixvermenigvuldigingsprocedure stap voor stap uit aan de hand van een voorbeeld, daarna vind je opgeloste oefeningen zodat je ook kunt oefenen. Ten slotte leer je wanneer twee matrices niet kunnen worden vermenigvuldigd en alle eigenschappen van deze matrixbewerking.
Hoe twee matrices te vermenigvuldigen?
Laten we de procedure bekijken om de vermenigvuldiging van twee matrices uit te voeren met een voorbeeld:

Om een matrixvermenigvuldiging te berekenen, moeten de rijen van de linkermatrix worden vermenigvuldigd met de kolommen van de rechtermatrix.
Dus eerst moeten we de eerste rij vermenigvuldigen met de eerste kolom. Om dit te doen, vermenigvuldigen we elk element in de eerste rij één voor één met elk element in de eerste kolom, en voegen we de resultaten toe. Dit alles zal dus het eerste element zijn van de eerste rij van de resulterende array. Kijk naar de werkwijze:

1 ⋅ 3 + 2 ⋅ 4 = 3 + 8 = 11. Dus:
Nu moeten we de eerste rij vermenigvuldigen met de tweede kolom . We herhalen daarom de procedure: we vermenigvuldigen elk element van de eerste rij één voor één met elk element van de tweede kolom, en we tellen de resultaten op. En dit alles zal het tweede element zijn van de eerste rij van de resulterende array:
1 ⋅ 5 + 2 ⋅ 1 = 5 + 2 = 7. Dus:
Zodra we de eerste rij van de resulterende matrix hebben gevuld, gaan we naar de tweede rij. We vermenigvuldigen daarom de tweede rij met de eerste kolom door de procedure te herhalen: we vermenigvuldigen elk element van de tweede rij één met één met elk element van de eerste kolom, en tellen de resultaten op:
-3 ⋅ 3 + 0 ⋅ 4 = -9 + 0 = -9. Nog:
Ten slotte vermenigvuldigen we de tweede rij met de tweede kolom . Altijd met dezelfde procedure: we vermenigvuldigen elk element van de tweede rij één voor één met elk element van de tweede kolom, en we tellen de resultaten op:
-3 ⋅ 5 + 0 ⋅ 1 = -15 + 0 = -15. Nog:
En hier eindigt de vermenigvuldiging van de twee matrices. Zoals je hebt gezien, moet je de rijen met de kolommen vermenigvuldigen, waarbij je altijd dezelfde procedure herhaalt: vermenigvuldig elk element van de rij één voor één met elk element van de kolom, en tel de resultaten bij elkaar op.
Opgeloste matrixvermenigvuldigingsoefeningen
Oefening 1
Los het volgende matrixproduct op:

Het is een product van matrices van orde 2:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-747926b92c1d388c1150613b0f471d7e_l3.png)
Om een matrixproduct op te lossen, moet je de rijen van de linkermatrix vermenigvuldigen met de kolommen van de rechtermatrix.
Dus vermenigvuldigen we eerst de eerste rij met de eerste kolom. Om dit te doen, vermenigvuldigen we elk element in de eerste rij één voor één met elk element in de eerste kolom, en voegen we de resultaten toe. En dit alles zal het eerste element zijn van de eerste rij van de resulterende array:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5 \end{pmatrix} = \begin{pmatrix} 1\cdot 3 +2 \cdot 1 & \\[1.1ex] & \end{pmatrix} = \begin{pmatrix} 5 & \\[1.1ex] & \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eff23eaf91738d6ffb383949e4b70856_l3.png)
Laten we nu de eerste rij vermenigvuldigen met de tweede kolom om het tweede element van de eerste rij van de resulterende matrix te verkrijgen:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 1\cdot (-2) +2 \cdot 5 \\[1.1ex] & \end{pmatrix} = \begin{pmatrix}5 & 8 \\[1.1ex] & \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-558838bcc38efc1aeeaf298d3e7151dc_l3.png)
We gaan naar de tweede rij, dus vermenigvuldigen we de tweede rij met de eerste kolom:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\[1.1ex] 3\cdot 3 +4 \cdot 1 & \end{pmatrix}= \begin{pmatrix}5 & 8 \\[1.1ex] 13 & \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-daab54a49cc53c320bb2965f691fd7ed_l3.png)
Ten slotte vermenigvuldigen we de tweede rij met de tweede kolom om het laatste element van de tabel te berekenen:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5 \end{pmatrix}= \begin{pmatrix} -1 & 8 \\[1.1ex]1 & 3\cdot (-2) +4 \cdot 5 \end{pmatrix}=\begin{pmatrix} 5 & 8 \\[1.1ex] 13 & 14 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a85e0d62a0db18c7712fd1b354f92bd5_l3.png)
Het resultaat van matrixvermenigvuldiging is dus:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} \bm{5} & \bm{8} \\[1.1ex]\bm{13} & \bm{14} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-76f1283db0175bc1a95b0a10c8961761_l3.png)
Oefening 2
Zoek het resultaat van de volgende 2×2 vierkante matrixvermenigvuldiging:

Het is een product van matrices met afmeting 2×2.
Om de vermenigvuldiging op te lossen, moet je de rijen van de linkermatrix vermenigvuldigen met de kolommen van de rechtermatrix:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{pmatrix} 4 & -1 \\[1.1ex] -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -2 & 5 \\[1.1ex] 6 & -3 \end{pmatrix} & = \begin{pmatrix} 4\cdot (-2)+(-1) \cdot 6 & 4\cdot 5+(-1) \cdot (-3) \\[1.1ex](-2)\cdot (-2)+3 \cdot 6 & (-2)\cdot 5+3 \cdot (-3)\end{pmatrix} \\[2ex] & =\begin{pmatrix} \bm{-14} & \bm{23} \\[1.1ex]\bm{22} & \bm{-19} \end{pmatrix} \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fc7217dab49f67df2a9d2abc561baf9d_l3.png)
Oefening 3
Bereken de volgende 3×3 matrixvermenigvuldiging:

Om een 3×3-matrixvermenigvuldiging uit te voeren, moet u de rijen van de linkermatrix vermenigvuldigen met de kolommen van de rechtermatrix:
![Rendered by QuickLaTeX.com \displaystyle \begin{array}{l} \begin{pmatrix} 1 & 2 & 0 \\[1.1ex] 3 & 2 & -1 \\[1.1ex] 5 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 & 0 \\[1.1ex] 1 & 0 & -2 \\[1.1ex] -1 & 2 & 1 \end{pmatrix} = \\[7.5ex] =\begin{pmatrix} 1 \cdot 3+2 \cdot 1+ 0 \cdot (-1) & 1 \cdot 4+2 \cdot 0+ 0 \cdot 2 & 1 \cdot 0+2 \cdot (-2)+ 0 \cdot 1 \\[1.1ex] 3 \cdot 3+2 \cdot 1+ (-1) \cdot (-1) & 3 \cdot 4+2 \cdot 0+ (-1) \cdot 2 & 3 \cdot 0+2 \cdot (-2)+ (-1) \cdot 1 \\[1.1ex] 5 \cdot 3+1 \cdot 1+ (-2) \cdot (-1) & 5 \cdot 4+1 \cdot 0+ (-2) \cdot 2 & 5 \cdot 0+1 \cdot (-2)+ (-2) \cdot 1 \end{pmatrix} = \\[7.5ex] =\begin{pmatrix} \bm{5} & \bm{4} & \bm{-4} \\[1.1ex] \bm{12} & \bm{10} & \bm{-5} \\[1.1ex] \bm{18} & \bm{16} & \bm{-4} \end{pmatrix}\end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ef6ee7bb6e4ac095a9fd51a545b163b0_l3.png)
Oefening 4
gegeven de matrix
![]()
:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix} 3 & 1 & -2 \\[1.1ex] 4 & 2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-27365f9993caf4fcdb747352e4ae539d_l3.png)
Berekenen:
![]()
We zullen eerst de getransponeerde matrix berekenen van
![]()
om de vermenigvuldiging te doen. En om de transponeermatrix te maken, moeten we de rijen in kolommen veranderen. Dat wil zeggen dat de eerste rij van de matrix de eerste kolom van de matrix wordt en de tweede rij van de matrix de tweede kolom van de matrix. Nog:
![Rendered by QuickLaTeX.com \displaystyle A^t= \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2 \\[1.1ex] -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ac4785c47f2e48e15b3d98ba426848b6_l3.png)
De matrixbewerking blijft daarom:
![Rendered by QuickLaTeX.com \displaystyle 2A\cdot A^t = 2 \begin{pmatrix} 3 & 1 & -2 \\[1.1ex] 4 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2 \\[1.1ex] -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9513fa8cc6996e18e3cf287f0210817a_l3.png)
Nu kunnen we de berekeningen doen. Wij berekenen eerst
![]()
(hoewel we ook eerst kunnen berekenen
![]()
):
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 \cdot 3 & 2 \cdot 1 & 2 \cdot (-2) \\[1.1ex] 2 \cdot 4 & 2 \cdot 2 & 2 \cdot (-1) \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2 \\[1.1ex] -2 & -1 \end{pmatrix} =](https://mathority.org/wp-content/ql-cache/quicklatex.com-ae5e95f09aedac8f0861bf13fb9c78a4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle =\begin{pmatrix} 6 & 2 & -4 \\[1.1ex] 8 & 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2 \\[1.1ex] -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-24c003b8da1081d6ca494adc3356b06b_l3.png)
En ten slotte lossen we het product van matrices op:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 6 \cdot 3 +2 \cdot 1 + (-4) \cdot (-2) & 6 \cdot 4 +2 \cdot 2 + (-4) \cdot (-1) \\[1.1ex] 8 \cdot 3 +4 \cdot 1 + (-2) \cdot (-2) & 8 \cdot 4 +4 \cdot 2 + (-2) \cdot (-1) \end{pmatrix} =](https://mathority.org/wp-content/ql-cache/quicklatex.com-0eb8f1817f0163a82ae39cc6c81d478e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle = \begin{pmatrix} \bm{28} & \bm{32} \\[1.1ex]\bm{32} & \bm{42} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-33533be747b72497915048e486d16541_l3.png)
Oefening 5
Beschouw de volgende matrices:
![Rendered by QuickLaTeX.com \displaystyle A=\begin{pmatrix} 2 & 4 \\[1.1ex] -3 & 5 \end{pmatrix} \qquad B=\begin{pmatrix} -1 & -2 \\[1.1ex] 3 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6e26aec2eee6bcae0e344682d20038f2_l3.png)
Berekenen:
![]()
Het is een bewerking die aftrekken combineert met matrixvermenigvuldigingen van orde 2:
![Rendered by QuickLaTeX.com \displaystyle A\cdot B - B \cdot A= \begin{pmatrix} 2 & 4 \\[1.1ex] -3 & 5 \end{pmatrix}\cdot \begin{pmatrix} -1 & -2 \\[1.1ex] 3 & -3 \end{pmatrix} - \begin{pmatrix} -1 & -2 \\[1.1ex] 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\[1.1ex] -3 & 5 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-43f79f2d970bb02caaeddec34d5ad2a1_l3.png)
We berekenen eerst de vermenigvuldiging aan de linkerkant:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2\cdot (-1) + 4 \cdot 3 & 2\cdot (-2) + 4 \cdot (-3) \\[1.1ex] (-3)\cdot (-1) + 5 \cdot 3 & (-3)\cdot (-2) + 5 \cdot (-3) \end{pmatrix} - \begin{pmatrix} -1 & -2 \\[1.1ex] 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\[1.1ex] -3 & 5 \end{pmatrix} =](https://mathority.org/wp-content/ql-cache/quicklatex.com-05ff586671fb0af274884169c54e5817_l3.png)
![Rendered by QuickLaTeX.com \displaystyle= \begin{pmatrix} 10 & -16 \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} -1 & -2 \\[1.1ex] 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\[1.1ex] -3 & 5 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-43c234a2d7aa4f9dcaf3140f617480f1_l3.png)
Nu lossen we de vermenigvuldiging aan de rechterkant op:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 10 & -16 \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} -1 \cdot 2 +(-2) \cdot (-3) & -1 \cdot 4 +(-2) \cdot 5 \\[1.1ex]3 \cdot 2 +(-3) \cdot (-3) & 3 \cdot 4 +(-3) \cdot 5 \end{pmatrix} =](https://mathority.org/wp-content/ql-cache/quicklatex.com-552309dd1be2f69bb72633539809283b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle =\begin{pmatrix} 10 & -16 \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} 4 &-14 \\[1.1ex]15 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeac84965cc522402e869234a841ba67_l3.png)
En tenslotte trekken we de matrices af:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 10-4 & -16 -(-14) \\[1.1ex] 18-15 & -9-(-3) \end{pmatrix} =](https://mathority.org/wp-content/ql-cache/quicklatex.com-faefbc14fc49439616b3d131243eba79_l3.png)
![Rendered by QuickLaTeX.com \displaystyle =\begin{pmatrix} \bm{6} & \bm{-2} \\[1.1ex] \bm{3} & \bm{-6} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-50bac6ac99e1cf6e4b77a1a8718f9fe4_l3.png)
Wanneer kun je twee matrices niet vermenigvuldigen?
Niet alle matrices kunnen worden vermenigvuldigd. Om twee matrices te vermenigvuldigen, moet het aantal kolommen in de eerste matrix overeenkomen met het aantal rijen in de tweede matrix.
De volgende vermenigvuldiging kan bijvoorbeeld niet worden uitgevoerd omdat de eerste matrix 3 kolommen heeft en de tweede matrix 2 rijen:
![Rendered by QuickLaTeX.com \displaystyle\begin{pmatrix} 1 & 3 & -2 \\[1.1ex] 4 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\[1.1ex] 3 & -1 \end{pmatrix} \ \longleftarrow \ \color{red} \bm{\times}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8314f9238afb3676bee5c9000c02752_l3.png)
Maar als we de volgorde omdraaien, kunnen ze vermenigvuldigd worden. Omdat de eerste matrix twee kolommen heeft en de tweede matrix twee rijen:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{pmatrix} 2 & 1 \\[1.1ex] 3 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & -2 \\[1.1ex] 4 & 0 & 5 \end{pmatrix} & = \begin{pmatrix} 2\cdot 1 + 1 \cdot 4 & 2\cdot 3 + 1 \cdot 0 & 2\cdot (-2) + 1 \cdot 5 \\[1.1ex] 3\cdot 1 + (-1) \cdot 4 & 3\cdot 3 + (-1) \cdot 0 & 3\cdot (-2) + (-1) \cdot 5 \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{6} & \bm{6} & \bm{1} \\[1.1ex]\bm{-1} & \bm{9} & \bm{-11} \end{pmatrix} \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-37d01cc99b578d3756312c3e6ff12cae_l3.png)
Eigenschappen van matrixvermenigvuldiging
Dit type matrixbewerking heeft de volgende kenmerken:
- Matrixvermenigvuldiging is associatief:
![]()
- Matrixvermenigvuldiging heeft ook de distributieve eigenschap:
![]()
- Het product van matrices is niet commutatief:
![]()
De volgende matrixvermenigvuldiging geeft bijvoorbeeld een resultaat:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{pmatrix} 1 & -1 \\[1.1ex] 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -2 & 5 \\[1.1ex] 0 & 1 \end{pmatrix} & = \begin{pmatrix} 1\cdot (-2) + (-1) \cdot 0 & 1\cdot 5 + (-1) \cdot 1 \\[1.1ex] 2\cdot (-2) + 3 \cdot 0 & 2\cdot 5 + 3 \cdot 1 \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{-2} & \bm{4} \\[1.1ex] \bm{-4} & \bm{13} \end{pmatrix}\end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3e780b321b160ad4a612e608199a374b_l3.png)
Maar het resultaat van het product is anders als we de volgorde van vermenigvuldiging van de matrices omkeren:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned}\begin{pmatrix} -2 & 5 \\[1.1ex] 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\[1.1ex] 2 & 3 \end{pmatrix} & = \begin{pmatrix} -2 \cdot 1 + 5\cdot 2 & -2 \cdot (-1) + 5\cdot 3 \\[1.1ex] 0 \cdot 1 + 1\cdot 2 & 0 \cdot (-1) + 1\cdot 3 \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{8} & \bm{17} \\[1.1ex] \bm{2} & \bm{3} \end{pmatrix}\end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-177d78a209e5d9e18828617e4913176d_l3.png)
- Bovendien resulteert elke matrix vermenigvuldigd met de identiteitsmatrix in dezelfde matrix. Dit wordt de multiplicatieve identiteitseigenschap genoemd:
![]()
![]()
Bijvoorbeeld:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 7 \\[1.1ex] -6 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\[1.1ex] 0 & 1 \end{pmatrix} = \begin{pmatrix} \bm{2} & \bm{7} \\[1.1ex] \bm{-6} & \bm{5} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9c1e72173419eb76554256cf6ccd0d2f_l3.png)
- Ten slotte is, zoals je misschien al vermoedt, elke matrix vermenigvuldigd met de nulmatrix gelijk aan de nulmatrix. Dit wordt de multiplicatieve eigenschap van nul genoemd:
![]()
![]()
Bijvoorbeeld:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 6 & -4 \\[1.1ex] 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\[1.1ex] 0 & 0 \end{pmatrix} = \begin{pmatrix} \bm{0} & \bm{0} \\[1.1ex] \bm{0} & \bm{0}\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3152d82054a80d61d548e969290aea4c_l3.png)