Hoe de inverse matrix te berekenen

Op deze pagina leert u wat het is en hoe u de inverse van een matrix kunt berekenen met de methode van determinanten (of adjunct-matrix) en met de Gauss-methode. Je zult ook alle eigenschappen van de inverse matrix zien, en je zult ook stap voor stap opgeloste voorbeelden en oefeningen voor elke methode vinden, zodat je ze volledig begrijpt. Ten slotte leggen we een formule uit voor het snel inverteren van een 2×2-matrix en zelfs het grootste nut van deze matrixbewerking: het oplossen van een systeem van lineaire vergelijkingen.

Wat is het omgekeerde van een matrix?

Zijn

A

een vierkante matrix. De inverse matrix van

A

het is geschreven

A^{-1}

, en het is deze matrix die voldoet aan:

A \cdot A^{-1} = I

A^{-1}\cdot A  = I

Goud

I

is de Identiteitsmatrix.

Wanneer kun je een matrix omkeren en wanneer niet?

De eenvoudigste manier om de invertibiliteit van een matrix te bepalen, is door de determinant ervan te gebruiken:

  • Als de determinant van de betreffende matrix verschillend is van 0, betekent dit dat de matrix inverteerbaar is. In dit geval zeggen we dat het een reguliere matrix is. Bovendien impliceert dit dat de matrix de maximale rang heeft.
  • Aan de andere kant, als de determinant van de matrix gelijk is aan 0, kan de matrix niet worden omgekeerd. En in dit geval zeggen we dat het een enkelvoudige of gedegenereerde matrix is.

Er zijn hoofdzakelijk twee methoden om elke matrix om te keren: de methode van determinanten of adjunct-matrix en de Gauss-methode. Hieronder heb je de uitleg van het eerste, maar je kunt hieronder ook raadplegen hoe je een matrix kunt omkeren met de Gauss-methode.

Een matrix omkeren met behulp van de determinantenmethode (of met behulp van de aangrenzende matrix)

Om de inverse van een matrix te berekenen,

\displaystyle A^{-1}

, moet de volgende formule worden toegepast:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

Goud:

  • \displaystyle \begin{vmatrix} A \end{vmatrix}

    is de determinant van de matrix

    A

  • \text{Adj}(A)

    is de adjunct-matrix van

    A

  • De exposant

    \bm{t}

    geeft matrixtransponering aan, dwz dat de bijgevoegde matrix moet worden getransponeerd.

Opmerking: Sommige boeken gebruiken een enigszins andere inverse matrixformule: ze transponeren eerst matrix A en berekenen vervolgens de bijbehorende matrix, in plaats van eerst de aangrenzende matrix te berekenen en deze vervolgens te transponeren. In werkelijkheid doet de volgorde er niet toe, omdat het resultaat precies hetzelfde is. Hier laten we u de formule achter om een gewijzigde matrix om te keren, voor het geval u deze liever gebruikt:

formule voor de inverse matrix met de adjunct-matrix van de getransponeerde

We zullen dan zien hoe we de inverse van een matrix kunnen vinden door een oefening als voorbeeld op te lossen:

Voorbeeld van het berekenen van de inverse matrix met behulp van de determinantenmethode (of adjunct-matrix):

  • Bereken de inverse van de volgende matrix:

\displaystyle  A = \begin{pmatrix} 4 & -2  \\[1.1ex] 3 & -1  \end{pmatrix}

Om de inverse van de matrix te bepalen, moeten we de volgende formule toepassen:

formule van de inverse matrix met de methode door determinanten of door de adjunct-matrix

Maar als de determinant van de matrix nul is, betekent dit dat de matrix niet inverteerbaar is. Daarom is het eerste dat u moet doen het berekenen van de determinant van de matrix en controleren of deze verschilt van 0:

\displaystyle  \lvert A \rvert  = \begin{vmatrix}  4 & -2  \\[1.1ex] 3 & -1 \end{vmatrix} = -4- (-6) = 2

De determinant is niet 0 , dus de matrix is inverteerbaar .

Als we daarom de waarde van de determinant in de formule vervangen, zal het omgekeerde van de matrix zijn:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{2} \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

We moeten nu de plaatsvervanger van A berekenen. Om dit te doen, moeten we elk element van matrix A vervangen door zijn plaatsvervanger.

Onthoud dat om de bijlage van te berekenen

a_{ij}

, dat wil zeggen van het rij-element

i

en de kolom

j

, moet de volgende formule worden toegepast:

\text{Adjunto de } a_{ij} = (-1)^{i+j} \bm{\cdot} \text{Menor complementario de } a_{ij}

Waar de complementaire minor van

a_{ij}

is de determinant van de matrix die de rij elimineert

i

en de kolom

j

.

De plaatsvervangers van de elementen van matrix A zijn dus:

\displaystyle  A = \begin{pmatrix} 4 & -2  \\[1.1ex] 3 & -1  \end{pmatrix}

\text{Adjunto de 4} =\displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} -1 \end{vmatrix} = 1 \cdot (-1) = \bm{-1}

\text{Adjunto de -2} =\displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 3 \end{vmatrix} = -1 \cdot 3 = \bm{-3}

\text{Adjunto de 3}  =\displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} -2 \end{vmatrix} = -1 \cdot (-2) = \bm{2}

\text{Adjunto de -1} =\displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 4 \end{vmatrix} = 1 \cdot 4 = \bm{4}

Opmerking: Verwar de determinant 1×1 niet met de absolute waarde, want in de determinant 1×1 wordt het getal niet omgezet naar positief.

Zodra de plaatsvervangers zijn berekend, vervangt u eenvoudigweg de elementen van A door hun plaatsvervangers om de plaatsvervangermatrix van A te vinden:

\displaystyle \displaystyle \text{Adj}(A) = \begin{pmatrix} -1 & -3  \\[1.1ex] 2 & 4  \end{pmatrix}

Opmerking: op bepaalde plaatsen is de adjunct-matrix de transpositie van de adjunct-matrix die we hier definiëren.

Daarom vervangen we de bijgevoegde matrix in de inverse matrixformule en deze wordt:

\displaystyle A^{-1} = \cfrac{1}{2} \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} -1 & -3  \\[1.1ex] 2 & 4  \end{pmatrix} ^{\bm{t}}

De exposant

\bm{t}

Dit vertelt ons dat we de matrix moeten transponeren . En om een matrix te transponeren moet je de rijen in kolommen veranderen , dat wil zeggen dat de eerste rij van de matrix de eerste kolom van de matrix wordt, en de tweede rij de tweede kolom:

\displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} -1 & 2  \\[1.1ex] -3 & 4  \end{pmatrix}

En ten slotte vermenigvuldigen we elke term van de matrix met

\cfrac{1}{2} :

\displaystyle A^{-1} = \begin{pmatrix} \sfrac{-1}{2} & \sfrac{2}{2}  \\[1.1ex] \sfrac{-3}{2} & \sfrac{4}{2}  \end{pmatrix}

oefening opgeloste inverse matrix met 2x2 determinanten

Opgeloste oefeningen over inverse matrices met de methode van determinanten (of de aangrenzende matrix)

Oefening 1

Inverteer de volgende matrix van afmeting 2×2 met behulp van de adjunct-matrixmethode:

\displaystyle A=\begin{pmatrix} 1 & 3 \\[1.1ex] 2 & 7  \end{pmatrix}

De inverse matrixformule is:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

We berekenen eerst de determinant van de matrix:

\displaystyle \begin{vmatrix}A\end{vmatrix}=\begin{vmatrix} 1 & 3 \\[1.1ex] 2 & 7 \end{vmatrix} = 7-6 = 1

De determinant is anders dan 0, dus de matrix kan worden omgekeerd.

Laten we nu de adjunct-matrix van A berekenen:

\text{Adjunto de 1} =\displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 7 \end{vmatrix} = 1 \cdot 7 = \bm{7}

\text{Adjunto de 3} =\displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 2\end{vmatrix} = -1 \cdot 2 = \bm{-2}

\text{Adjunto de 2}  =\displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} 3 \end{vmatrix} = -1 \cdot 3 = \bm{-3}

\text{Adjunto de 7} =\displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 \end{vmatrix} = 1 \cdot 1 = \bm{1}

\displaystyle \displaystyle \text{Adj}(A) = \begin{pmatrix} 7 & -2  \\[1.1ex] -3 & 1 \end{pmatrix}

Zodra de determinant van de matrix en zijn adjunct zijn berekend, vervangen we hun waarden in de formule:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 7 & -2 \\[1.1ex] -3 & 1 \end{pmatrix}^{\bm{t}}

We transponeren de bijgevoegde matrix:

\displaystyle A^{-1} = 1 \cdot \begin{pmatrix} 7 & -3 \\[1.1ex] -2 & 1 \end{pmatrix}

De inverse matrix van A is daarom:

\displaystyle \bm{A^{-1} =} \begin{pmatrix} \bm{7} & \bm{-3} \\[1.1ex] \bm{-2} & \bm{1} \end{pmatrix}

Oefening 2

Inverteer de volgende vierkante matrix met behulp van de determinantenmethode:

\displaystyle A=\begin{pmatrix} -3 & -2 \\[1.1ex] 5 & 4  \end{pmatrix}

De inverse matrixformule is:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

We berekenen eerst de determinant van de matrix:

\displaystyle \begin{vmatrix}A\end{vmatrix}=\begin{vmatrix} -3 & -2 \\[1.1ex] 5 & 4\end{vmatrix} = -12+10 = -2

De determinant is anders dan 0, dus de matrix kan worden omgekeerd.

Laten we nu de adjunct-matrix van A berekenen:

\text{Adjunto de -3} =\displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 4 \end{vmatrix} = 1 \cdot 4 = \bm{4}

\text{Adjunto de -2} =\displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 5\end{vmatrix} = -1 \cdot 5 = \bm{-5}

\text{Adjunto de 5}  =\displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} -2 \end{vmatrix} = -1 \cdot (-2) = \bm{2}

\text{Adjunto de 4} =\displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} -3 \end{vmatrix} = 1 \cdot (-3) = \bm{-3}

\displaystyle \displaystyle \text{Adj}(A) = \begin{pmatrix} 4 & -5  \\[1.1ex] 2 & -3 \end{pmatrix}

Zodra de determinant van de matrix en zijn adjunct zijn gevonden, vervangen we hun waarden in de formule:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{-2} \cdot \begin{pmatrix} 4 & -5 \\[1.1ex] 2 & -3 \end{pmatrix}^{\bm{t}}

We transponeren de bijgevoegde matrix:

\displaystyle A^{-1} = \cfrac{1}{-2} \cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -5 & -3 \end{pmatrix}

We vermenigvuldigen elk element met

\cfrac{1}{-2} :

\displaystyle A^{-1} = \begin{pmatrix} \cfrac{4}{-2} & \cfrac{2}{-2} \\[3ex] \cfrac{-5}{-2} & \cfrac{-3}{-2} \end{pmatrix}

De inverse matrix van A is daarom:

\displaystyle \bm{A^{-1} =} \begin{pmatrix} \bm{-2} & \bm{-1} \\[2ex] \cfrac{\bm{5}}{\bm{2}} & \cfrac{\bm{3}}{\bm{2}} \end{pmatrix}

Oefening 3

Inverteer de volgende matrix van afmeting 3×3 met behulp van de adjunct-matrixmethode:

\displaystyle A=\begin{pmatrix}2&3&-2\\[1.1ex] 1&4&1\\[1.1ex] 2&1&-3\end{pmatrix}

De inverse matrixformule is:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

We lossen eerst de determinant van de matrix op met de Sarrusregel:

\displaystyle \begin{vmatrix}A\end{vmatrix}=\begin{vmatrix} 2&3&-2\\[1.1ex] 1&4&1\\[1.1ex] 2&1&-3 \end{vmatrix} = -24+6-2+16-2+9 = 3

De determinant is anders dan 0, dus de matrix kan worden omgekeerd.

Zodra de determinant is opgelost, vinden we de adjunct-matrix van A:

\text{Adjunto de 2} = \displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 4&1\\[1.1ex] 1&-3 \end{vmatrix} = 1 \cdot (-13) = \bm{-13}

\text{Adjunto de 3} = \displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix}1&1\\[1.1ex] 2&-3\end{vmatrix} = -1 \cdot (-5) = \bm{5}

\text{Adjunto de -2}  = \displaystyle (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 1&4\\[1.1ex] 2&1 \end{vmatrix} = 1\cdot (-7) = \bm{-7}

\text{Adjunto de 1} = \displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} 3&-2 \\[1.1ex] 1&-3 \end{vmatrix} = -1 \cdot (-7) = \bm{7}

\text{Adjunto de 4} = \displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 2&-2\\[1.1ex] 2&-3 \end{vmatrix} = 1 \cdot (-2) = \bm{-2}

\text{Adjunto de 1} = \displaystyle (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 2&3\\[1.1ex] 2&1\end{vmatrix} = -1 \cdot (-4) = \bm{4}

\text{Adjunto de 2}  = \displaystyle (-1)^{3+1} \bm{\cdot} \begin{vmatrix} 3&-2\\[1.1ex] 4&1\end{vmatrix} = 1 \cdot 11 = \bm{11}

\text{Adjunto de 1} = \displaystyle (-1)^{3+2} \bm{\cdot} \begin{vmatrix} 2&-2\\[1.1ex] 1&1\end{vmatrix} = -1 \cdot 4 = \bm{-4}

\text{Adjunto de -3} = \displaystyle (-1)^{3+3} \bm{\cdot} \begin{vmatrix} 2&3\\[1.1ex] 1&4 \end{vmatrix} = 1 \cdot 5 = \bm{5}

\displaystyle \displaystyle \text{Adj}(A) = \begin{pmatrix} -13 & 5 & -7  \\[1.1ex] 7 & -2 & 4 \\[1.1ex] 11 & -4 & 5 \end{pmatrix}

Nadat we de determinant van de matrix en zijn adjunct hebben berekend, vervangen we hun waarden in de formule:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -13 & 5 & -7 \\[1.1ex] 7 & -2 & 4 \\[1.1ex] 11 & -4 & 5 \end{pmatrix}^{\bm{t}}

We transponeren de bijgevoegde matrix:

\displaystyle A^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -13 & 7 & 11 \\[1.1ex] 5 & -2 & -4 \\[1.1ex] -7 & 4 & 5 \end{pmatrix}

En de omgekeerde matrix A is:

\displaystyle \bm{A^{-1} =} \begin{pmatrix} \sfrac{\bm{-13}}{\bm{3}} & \sfrac{\bm{7}}{\bm{3}} & \sfrac{\bm{11}}{\bm{3}} \\[1.1ex] \sfrac{\bm{5}}{\bm{3}} & \sfrac{\bm{-2}}{\bm{3}} & \sfrac{\bm{-4}}{\bm{3}} \\[1.1ex] \sfrac{\bm{-7}}{\bm{3}} & \sfrac{\bm{4}}{\bm{3}} & \sfrac{\bm{5}}{\bm{3}}\end{pmatrix}

Oefening 4

Inverteer de volgende matrix van orde 3 met behulp van de adjunct-matrixmethode:

\displaystyle A=\begin{pmatrix}4&5&-1\\[1.1ex] -1&3&2\\[1.1ex] 3&8&1\end{pmatrix}

De inverse matrixformule is:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

We moeten eerst de determinant van de matrix berekenen, want als de determinant 0 is, betekent dit dat de matrix geen inverse heeft.

\displaystyle \begin{vmatrix}A\end{vmatrix}=\begin{vmatrix} 4&5&-1\\[1.1ex] -1&3&2\\[1.1ex] 3&8&1 \end{vmatrix} = 12+30+8+9-64+5 = \bm{0}

De determinant van A is 0, dus de matrix kan niet worden omgekeerd.

Oefening 5

Inverteer de volgende 3 × 3 vierkante matrix met de determinantenmatrixmethode:

\displaystyle A=\begin{pmatrix}1 & 4 & -3 \\[1.1ex] -2 & 1 & 0 \\[1.1ex] -1 & -2 & 2\end{pmatrix}

De inverse matrixformule is:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

Allereerst lossen we de determinant van de matrix op met de Sarrusregel:

\displaystyle  \lvert A \rvert = \begin{vmatrix} 1 & 4 & -3 \\[1.1ex] -2 & 1 & 0 \\[1.1ex] -1 & -2 & 2 \end{vmatrix} = 2+0-12-3-0+16 = 3

De determinant is anders dan 0, dus de matrix kan worden omgekeerd.

Zodra de determinant is opgelost, vinden we de adjunct-matrix van A:

\displaystyle \text{Adjunto de 1} =  (-1)^{1+1} \bm{\cdot} \begin{vmatrix}  1 & 0 \\[1.1ex]  -2 & 2 \end{vmatrix} = 1 \bm{\cdot} (2-0) = \bm{2}

\displaystyle \text{Adjunto de 4} =  (-1)^{1+2} \bm{\cdot} \begin{vmatrix}  -2 &  0 \\[1.1ex] -1 & 2 \end{vmatrix} = -1 \bm{\cdot} (-4-0) = \bm{4}

\displaystyle \text{Adjunto de -3} = (-1)^{1+3} \bm{\cdot} \begin{vmatrix} -2 & 1 \\[1.1ex] -1 & -2 \end{vmatrix} = 1 \bm{\cdot} \bigl(4-(-1)\bigr) = \bm{5}

\displaystyle \text{Adjunto de -2} =  (-1)^{2+1} \bm{\cdot} \begin{vmatrix}  4 & -3  \\[1.1ex]  -2 & 2 \end{vmatrix} = -1 \bm{\cdot} (8-6) = \bm{-2}

\displaystyle \text{Adjunto de 1} = (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 &  -3  \\[1.1ex] -1 &  2 \end{vmatrix} = 1 \bm{\cdot} (2-3) = \bm{-1}

\displaystyle \text{Adjunto de 0} =  (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 1 & 4  \\[1.1ex] -1 & -2 \end{vmatrix} = -1 \bm{\cdot} \bigl(-2-(-4)\bigr) = \bm{-2}

\displaystyle \text{Adjunto de -1} = (-1)^{3+1} \bm{\cdot} \begin{vmatrix}  4 & -3 \\[1.1ex]  1 & 0  \end{vmatrix} = 1 \bm{\cdot} \bigl(0-(-3)\bigr) = \bm{3}

\displaystyle \text{Adjunto de -2}   = (-1)^{3+2} \bm{\cdot} \begin{vmatrix} 1 & -3 \\[1.1ex] -2 & 0 \end{vmatrix} = -1 \cdot (0-6) = \bm{6}

\displaystyle \text{Adjunto de 2} =  (-1)^{3+3} \bm{\cdot} \begin{vmatrix} 1 & 4 \\[1.1ex] -2 & 1 \end{vmatrix} = 1 \bm{\cdot} \bigl(1-(-8)\bigr) = \bm{9}

\displaystyle \displaystyle \text{Adj}(A) = \begin{pmatrix} 2 & 4 & 5 \\[1.1ex] -2 & -1 & -2 \\[1.1ex] 3 & 6 & 9 \end{pmatrix}

Nadat we de determinant van de matrix en zijn adjunct hebben berekend, vervangen we hun waarden in de formule:

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle A^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} 2 & 4 & 5 \\[1.1ex] -2 & -1 & -2 \\[1.1ex] 3 & 6 & 9\end{pmatrix}^{\bm{t}}

We transponeren de bijgevoegde matrix:

\displaystyle A^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} 2 & -2 & 3 \\[1.1ex] 4 & -1 & 6 \\[1.1ex] 5 & -2 & 9 \end{pmatrix}

En tot slot opereren wij:

\displaystyle A^{-1} = \begin{pmatrix} \sfrac{2}{3} & \sfrac{-2}{3} & \sfrac{3}{3} \\[1.1ex] \sfrac{4}{3} & \sfrac{-1}{3} & \sfrac{6}{3} \\[1.1ex] \sfrac{5}{3} & \sfrac{-2}{3} & \sfrac{9}{3} \end{pmatrix}

oefening stap voor stap opgelost van de inverse matrix volgens de methode van de adjunct-matrix 3x3

Inverteer een matrix met behulp van de Gauss-methode:

Om de inverse van een matrix te berekenen met de Gauss-methode , moet je bewerkingen uitvoeren op de rijen van een matrix (we zullen dit later zien). Voordat u dus gaat zien hoe u de Gauss-methode kunt gebruiken, is het belangrijk dat u alle bewerkingen kent die kunnen worden uitgevoerd op de rijen van de matrices:

Lijntransformaties toegestaan in de Gaussische methode

  • Verander de volgorde van de rijen van de matrix.

We kunnen bijvoorbeeld de volgorde van regels 2 en 3 van een matrix wijzigen:

\left( \begin{array}{ccc} 3 & 5 & -2 \\[2ex] -2 & 4 & -1  \\[2ex] 6 & 1 & -3 \end{array} \right)  \begin{array}{c} \\[2ex] \xrightarrow{ f_2 \rightarrow f_3}} \\[2ex] \xrightarrow{ f_3 \rightarrow f_2}} \end{array} \left( \begin{array}{ccc} 3 & 5 & -2  \\[2ex] 6 & 1 & -3  \\[2ex] -2 & 4 & -1 \end{array} \right)

  • Vermenigvuldig of deel alle termen in een rij met een ander getal dan 0.

We kunnen bijvoorbeeld regel 1 vermenigvuldigen met 4 en regel 3 delen met 2:

\left( \begin{array}{ccc} 1 & -2 & 3 \\[2ex] 3 & -1 & 5  \\[2ex] 2 & -4 & -2  \end{array} \right) \begin{array}{c}  \xrightarrow{4  f_1} \\[2ex]  \\[2ex] \xrightarrow{ f_3 / 2} \end{array} \left( \begin{array}{ccc} 4 & -8 & 12 \\[2ex] 3 & -1 & 5  \\[2ex] 1 & -2 & -1  \end{array} \right)

  • Vervang een rij door de som van dezelfde rij plus een andere rij vermenigvuldigd met een getal.

In de volgende matrix voegen we bijvoorbeeld rij 3 vermenigvuldigd met 1 toe aan rij 2:

\left( \begin{array}{ccc} -1 & -3 & 4  \\[2ex] 2 & 4 & 1  \\[2ex] 1 & -2 & 3  \end{array} \right) \begin{array}{c}   \\[2ex]  \xrightarrow{f_2 + 1\cdot f_3}  \\[2ex] & \end{array} \left( \begin{array}{ccc} -1 & -3 & 4  \\[2ex] 3 & 2 & 4  \\[2ex] 1 & -2 & 3  \end{array} \right)

Voorbeeld van het berekenen van de inverse matrix met behulp van de Gauss-methode:

Laten we met een voorbeeld zien hoe we de Gauss-methode kunnen toepassen om een matrix om te keren:

  • Bereken de inverse van de volgende matrix:

\displaystyle  A = \left( \begin{array}{ccc} 1 & 0 & 1 \\[2ex] 0 & 2 & 1 \\[2ex] 1 & 5 & 4 \end{array} \right)

Het eerste dat we moeten doen is de A-matrix en de Identiteitsmatrix combineren tot één enkele matrix . De A-matrix aan de linkerkant en de Identiteitsmatrix aan de rechterkant:

\displaystyle   \bigl( A \  \lvert \ I \bigr)

oefening stap voor stap opgelost van inverse matrix met de 3x3 Gauss-methode

Om de inverse matrix te berekenen, moeten we de linkermatrix omzetten in een identiteitsmatrix. En om dat te doen, moeten we transformaties op de rijen toepassen totdat we daar zijn.

We gaan verder met kolommen, dat wil zeggen dat we bewerkingen op de rijen uitvoeren om eerst de getallen in de eerste kolom te transformeren, vervolgens die in de tweede kolom en ten slotte die in de derde kolom.

De 1’s en 0’s in de eerste kolom zijn al geschikt, aangezien de identiteitsmatrix op deze posities ook een 1 en een 0 bevat. Daarom is het op dit moment niet nodig om een transformatie op deze rijen toe te passen.

\left(  \begin{array}{ccc|ccc} \color{blue}\boxed{\color{black}1} & 0 & 1 & 1 & 0 & 0 \\[2ex] \color{blue}\boxed{\color{black}0} & 2 & 1 & 0 & 1 & 0  \\[2ex] 1 & 5 & 4 &0 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft echter een 0 in het laatste element van de eerste kolom, waar we nu een 1 hebben. We moeten dus de 1 omzetten naar 0. Om dit te doen, voegen we rij 1 vermenigvuldigd met – toe aan rij 3.1:

\begin{array}{lrrr|rrr}  & 1 & 5 & 4 &0 & 0 & 1  \\ + & -1 & 0 & -1 & -1 & 0 & 0  \\ \hline  & 0 & 5 & 3 & -1 & 0 & 1  \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_3} \\ \color{blue}\bm{\leftarrow -f_1} \\ \phantom{hline} \\ \end{array}

Dus als we deze som berekenen, krijgen we de volgende matrix:

\left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 2 & 1 & 0 & 1 & 0  \\[2ex] 1 & 5 & 4 &0 & 0 & 1 \end{array} \right) \begin{array}{c}   \\[2ex]  \\[2ex] \xrightarrow{f_3 - f_1} \end{array} \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 2 & 1 & 0 & 1 & 0  \\[2ex] \color{blue}\boxed{\color{black}0} & 5 & 3 & -1 & 0 & 1  \end{array} \right)

We zijn er dus in geslaagd de 1 om te zetten in 0.

Laten we nu verder gaan naar de tweede kolom van de linkermatrix. Het eerste element is een 0, wat goed is omdat de identiteitsmatrix op dezelfde positie een 0 heeft. In plaats van een 2 zou er echter een 1 moeten zijn, dus delen we de tweede regel door 2:

\left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 2 & 1 & 0 & 1 & 0  \\[2ex] 1 & 5 & 4 &0 & 0 & 1 \end{array} \right) \begin{array}{c}   \\[2ex] \xrightarrow{f_2/2}\\[2ex] & \end{array}  \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & \color{blue}\boxed{\color{black}1} & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex] 0 & 5 & 3 & -1 & 0 & 1  \end{array} \right)

Bovendien moeten we in de tweede kolom ook de 5 in 0 veranderen. Omdat de 5 vijf keer groter is dan de 1 in de tweede rij, voegen we rij 2 vermenigvuldigd met -5 toe aan rij 3:

\begin{array}{lrrr|rrr}  & 0 & 5 & 3 & -1 & 0 & 1  \\ + & 0 & -5 & \sfrac{-5}{2} & 0 & \vphantom{\Bigl(}\sfrac{-5}{2} & 0  \\ \hline & 0 & 0 &  \sfrac{1}{2}  & -1 & \sfrac{-5}{2} \vphantom{\Bigl(} & 1  \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_3} \\ \color{blue}\bm{\leftarrow -5f_2}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(}  \end{array}

Door deze bewerking uit te voeren, eindigen we dus met de matrix met een 0 in het laatste element van de tweede kolom:

\left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex] 0 & 5 & 3 & -1 & 0 & 1  \end{array} \right) \begin{array}{c}   \\[2ex] \\[2ex] \xrightarrow{f_3 - 5f_2} \end{array}  \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex]  0 & \color{blue}\boxed{\color{black}0} &  \sfrac{1}{2}  & -1 & \sfrac{-5}{2}  & 1  \end{array} \right)

Ten slotte zullen we de laatste kolom van de matrix naar links transformeren, maar deze keer moeten we onderaan beginnen. Het is daarom noodzakelijk om de

\sfrac{1}{2}

in een 1. Daarom vermenigvuldigen we de laatste regel met 2:

\left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex]  0 & 0 &  \sfrac{1}{2}  & -1 & \sfrac{-5}{2}  & 1  \end{array} \right)\begin{array}{c}   \\[2ex] \\[2ex] \xrightarrow{2f_3} \end{array}  \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex]  0 & 0 &  \color{blue}\boxed{\color{black}1}  & -2 & -5  & 2  \end{array} \right)

We moeten nu de transformatie transformeren

\sfrac{1}{2}

rest van de laatste kolom als 0. Deze keer kunnen we de rij echter niet met 2 vermenigvuldigen, omdat we de 1 ook naar 2 zouden converteren (wanneer de identiteitsmatrix op die positie een 1 heeft). Daarom voegen we regel 3 gedeeld door -2 toe aan regel 2:

\begin{array}{lrrr|rcr}  & 0 & 1 &  \vphantom{\Bigl(} \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\ + & 0 & 0 &\vphantom{\Bigl(} -\sfrac{1}{2}  & 1 & \sfrac{5}{2}  & -1  \\ \hline & 0 & 1 & 0\phantom{0}  & 1 & 3 \vphantom{\Bigl(} & -1  \end{array} \begin{array}{l}\vphantom{\Bigl(} \color{blue}\bm{\leftarrow f_2} \\ \color{blue}\bm{\leftarrow f_3/(-2)}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(}  \end{array}

Dus door deze operatie uit te voeren, slagen we erin om de

\sfrac{1}{2}

in een 0:

\left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{1}{2} & 0 & \sfrac{1}{2} & 0  \\[2ex]  0 & 0 &  1  & -2 & -5  & 2  \end{array} \right) \begin{array}{c}   \\[2ex] \xrightarrow{f_2-f_3/2} \\[2ex] & \end{array}  \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 & \color{blue}\boxed{\color{black}0} & 1 & 3  & -1  \\[2ex]  0 & 0 &  1  & -2 & -5  & 2  \end{array} \right)

Ten slotte hoeven we alleen maar de 1 in de eerste rij van de derde kolom om te zetten in 0. De derde rij heeft ook een 1 in dezelfde kolom, dus we voegen rij 3 vermenigvuldigd met -1 toe aan rij 1:

\begin{array}{lrrr|rcr}  & 1 & 0 & 1 & 1 & 0 & 0 \\ + & 0 & 0 &  -1  & 2 & 5  & -2  \\ \hline & 1 & 0 & 0  & 3 & 5 & -2  \end{array} \begin{array}{l}\color{blue}\bm{\leftarrow f_1} \\ \color{blue}\bm{\leftarrow -f_3}\\ \phantom{hline}   \end{array}

En door deze bewerking uit te voeren, slagen we erin om de 1 om te zetten in een 0:

\ \left(  \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\[2ex] 0 & 1 &0 & 1 & 3  & -1  \\[2ex]  0 & 0 &  1  & -2 & -5  & 2  \end{array} \right) \begin{array}{c} \xrightarrow{f_1-f_3}  \\[2ex]  \\[2ex]  & \end{array}  \left(  \begin{array}{ccc|ccc} 1 & 0 & \color{blue}\boxed{\color{black}0}  & 3 & 5 & -2  \\[2ex] 0 & 1 & 0 & 1 & 3  & -1  \\[2ex]  0 & 0 &  1  & -2 & -5  & 2  \end{array} \right)

Zodra we de linkermatrix met succes hebben omgezet in een identiteitsmatrix, kennen we ook de inverse matrix. Omdat de inverse matrix de matrix is die we aan de rechterkant verkrijgen door de linkermatrix om te zetten in identiteitsmatrix . De inverse van de matrix is dus:

Voorbeeld van een 3x3 inverse matrix

Opgeloste oefeningen over inverse matrices met de Gauss-methode

Oefening 1

Inverteer de volgende matrix via de Gauss-methode:

\displaystyle A=\begin{pmatrix} 1 & 2 \\[1.1ex] 1 & 3  \end{pmatrix}

Het eerste dat we moeten doen is de A-matrix en de Identiteitsmatrix combineren tot één enkele matrix. De A-matrix links en de identiteitsmatrix rechts:

\displaystyle \left( A \ | \ I \right)

opgeloste oefening van een inverse matrix met de 2x2 Gauss-methode

Om nu de inverse matrix te berekenen, moeten we de linkerzijdematrix omzetten in identiteitsmatrix. En om dat te doen, moeten we transformaties op de rijen toepassen totdat we daar zijn.

De eerste term van allemaal, 1, is al hetzelfde als de identiteitsmatrix. Daarom is het op dit moment niet nodig om een transformatie op de eerste rij toe te passen.

De identiteitsmatrix heeft echter een 0 in het laatste element van de eerste kolom, waar we nu een 1 hebben. We moeten daarom de 1 omzetten naar 0. Hiervoor trekken we rij 1 af van rij 2:

\left( \begin{array}{cc|cc}1 & 2 & 1 & 0 \\[1.5ex] 1 & 3 & 0 & 1\end{array} \right) \begin{array}{c} \\[1.5ex] \xrightarrow{f_2 - f_1}  \end{array} \left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\[1.5ex] 0 & 1 & -1 & 1\end{array} \right)

We gaan verder met de tweede kolom: 1 hieronder is goed. Maar niet de 2 hierboven, aangezien de identiteitsmatrix op die positie een 0 heeft. Om de 2 naar 0 om te zetten, trekken we daarom regel 2 vermenigvuldigd met 2 af van regel 1:

\left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\[1.5ex] 0 & 1 & -1 & 1 \end{array} \right) \begin{array}{c}  \xrightarrow{f_1 - 2f_2} \\[1.5ex] & \end{array} \left( \begin{array}{cc|cc} 1 & 0 & 3 & -2 \\[1.5ex] 0 & 1 & -1 & 1 \end{array} \right)

De inverse matrix is de matrix die we aan de rechterkant verkrijgen na het omzetten van de matrix aan de linkerkant in een identiteitsmatrix. En nu hebben we de identiteitsmatrix aan de linkerkant. De inverse matrix is dus:

\bm{A^{-1}= \left(} \begin{array}{cc}  \bm{3} & \bm{-2} \\[1.5ex]  \bm{-1} & \bm{1} \end{array}\bm{ \right)}

Oefening 2

Inverteer de volgende matrix met de Gauss-procedure:

\displaystyle A=\begin{pmatrix} 1 & 1 & -4 \\[1.1ex]  0 & 3 & 2 \\[1.1ex] 0 & 1 & 1  \end{pmatrix}

Eerst plaatsen we de A-matrix en de Identiteitsmatrix in één enkele matrix:

\displaystyle \left( A \ | \ I \right)

\left( \begin{array}{ccc|ccc} 1 & 1 & -4 & 1 & 0 & 0 \\[2ex]  0 & 3 & 2 & 0 & 1 & 0 \\[2ex] 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right)

Nu moeten we de rijen transformeren totdat we de linkermatrix in een identiteitsmatrix hebben omgezet.

De eerste kolom van de linkermatrix is al gelijk aan de eerste kolom van de identiteitsmatrix. Het is daarom niet nodig om de cijfers ervan te wijzigen.

De identiteitsmatrix heeft echter een 1 in het tweede element van de tweede kolom, waar nu een 3 staat. We moeten de 3 dus omzetten in een 1. Om dit te doen trekken we van regel 2 regel 3 af, vermenigvuldigd met 2:

\left( \begin{array}{ccc|ccc} 1 & 1 & -4 & 1 & 0 & 0 \\[2ex]  0 & 3 & 2 & 0 & 1 & 0 \\[2ex] 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 - 2f_3} \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc} 1 & 1 & 4 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft in het laatste element van de tweede kolom een 0, waar nu een 1 staat. We moeten de 1 dus omzetten in 0. Hiervoor trekken we regel 2 af van regel 3:

\left( \begin{array}{ccc|ccc} 1 & 1 & -4 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{f_3 - f_2} \end{array} \left( \begin{array}{ccc|ccc} 1 & 1 & -4 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 0 & 1 & 0 & -1 & 3 \end{array} \right)

De identiteitsmatrix heeft in het eerste element van de tweede kolom een 0, waar nu een 1 staat. We moeten de 1 dus omzetten naar 0. Hiervoor trekken we regel 2 af van regel 1:

\left( \begin{array}{ccc|ccc} 1 & 1 & -4 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 0 & 1 & 0 & -1 & 3 \end{array} \right) \begin{array}{c} \xrightarrow{f_1 - f_2} \\[2ex]  \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc}1 & 0 & -4 & 1 & -1 & 2 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 0 & 1 & 0 & -1 & 3 \end{array} \right)

Het enige wat we nu moeten doen is de -4 omzetten in 0. Om dit te doen, voegen we regel 3 vermenigvuldigd met 4 toe aan regel 1:

\left( \begin{array}{ccc|ccc} 1 & 0 & -4 & 1 & -1 & 2 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 0 & 1 & 0 & -1 & 3\end{array} \right) \begin{array}{c} \xrightarrow{f_1 + 4f_3} \\[2ex]  \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc}1 & 0 & 0 & 1 & -5 & 14 \\[2ex]  0 & 1 & 0 & 0 & 1 & -2 \\[2ex] 0 & 0 & 1 & 0 & -1 & 3 \end{array} \right)

We hebben de identiteitsmatrix al vanaf de linkerkant verkregen. De inverse matrix is dus:

\bm{A^{-1}= \left( } \begin{array}{ccc}  \bm{1} & \bm{-5}  & \bm{14} \\[2ex]  \bm{0} & \bm{1} & \bm{-2} \\[2ex] \bm{0} & \bm{-1 }& \bm{3} \end{array} \bm{ \right)}

Oefening 3

Inverteer de volgende matrix met behulp van de Gauss-methode:

\displaystyle A=\begin{pmatrix} 1 & 2 & 1 \\[1.1ex]  0 & 1 & 0 \\[1.1ex] 2 & 0 & 3 \end{pmatrix}

Voordat we aan de slag gaan, moeten we de A-matrix en de Identiteitsmatrix in één enkele matrix plaatsen:

\displaystyle \left( A \ | \ I \right)

\left( \begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 2 & 0 & 3 & 0 & 0 & 1 \end{array} \right)

We moeten nu de linkermatrix omzetten in een identiteitsmatrix door op de rijen te werken.

De eerste twee elementen van de eerste kolom zijn al dezelfde als die van de identiteitsmatrix. Het is dus niet nodig om deze cijfers aan te passen.

Maar de identiteitsmatrix heeft een 0 in het derde element van de eerste kolom, waar nu een 2 staat. We moeten de 2 daarom omzetten in een 0. Om dit te doen trekken we van regel 3 regel 1 vermenigvuldigd met 2 af:

\left( \begin{array}{ccc|ccc}1 & 2 & 1 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 2 & 0 & 3 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex] \\[2ex] \xrightarrow{f_3 - 2f_1}   \end{array} \left( \begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & -4 & 1 & -2 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft een 0 in het eerste element van de tweede kolom, waar nu een 2 staat. We moeten de 2 daarom omzetten in een 0. Hiervoor trekken we van regel 1 regel 2 vermenigvuldigd met 2 af:

\left( \begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & -4 & 1 & -2 & 0 & 1 \end{array} \right) \begin{array}{c} \xrightarrow{f_1 -2f_2} \\[2ex]  \\[2ex] & \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & -2 & 0\\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & -4 & 1 & -2 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft een 0 in het laatste element van de tweede kolom, waar nu een -4 staat. We moeten dus de -4 omzetten in 0. Om dit te doen, voegen we regel 2 vermenigvuldigd met 4 toe aan regel 3:

\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & -2 & 0\\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & -4 & 1 & -2 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{f_3 +4f_2} \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & -2 & 0\\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & 0 & 1 & -2 & 4 & 1 \end{array} \right)

Het enige wat we nu moeten doen is het eerste element van de derde kolom omzetten naar 0. Om dit te doen, voegen we regel 3 vermenigvuldigd met -1 toe aan regel 1:

\left( \begin{array}{ccc|ccc}1 & 0 & 1 & 1 & -2 & 0\\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & 0 & 1 & -2 & 4 & 1 \end{array} \right) \begin{array}{c} \xrightarrow{f_1 - f_3} \\[2ex]  \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc}1 & 0 & 0 & 3 & -6  & -1\\[2ex]  0 & 1 & 0 & 0 & 1 & 0 \\[2ex] 0 & 0 & 1 & -2 & 4 & 1 \end{array} \right)

We hebben ons al gerealiseerd dat de matrix aan de linkerkant de identiteitsmatrix is. Dus het omgekeerde van de matrix

A

Oosten:

\bm{A^{-1}= \left( } \begin{array}{ccc}  \bm{3} & \bm{-6}  & \bm{-1} \\[2ex]  \bm{0} & \bm{1} & \bm{0} \\[2ex] \bm{-2} & \bm{4}& \bm{1} \end{array} \bm{ \right)}

Oefening 4

Inverteer de volgende matrix met behulp van de Gauss-methode:

\displaystyle A=\begin{pmatrix} 1 & -2 & 0 \\[1.1ex]  1 & 2 & 2 \\[1.1ex] 0 & 3 & 2 \end{pmatrix}

Het eerste dat we moeten doen is de A-matrix en de Identiteitsmatrix samenvoegen tot één enkele matrix:

\displaystyle \left( A \ | \ I \right)

\left( \begin{array}{ccc|ccc}1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 1 & 2 & 2 & 0 & 1 & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right)

We moeten nu de matrix aan de linkerkant omzetten in een identiteitsmatrix door rijbewerkingen toe te passen.

Het eerste element van de eerste kolom is al hetzelfde als dat van de identiteitsmatrix. Het is daarom niet nodig om deze te wijzigen.

De identiteitsmatrix heeft echter een 0 in het tweede element van de eerste kolom, waar nu een 1 staat. We moeten de 1 dus omzetten in 0. Hiervoor trekken we regel 1 af van regel 2:

\left( \begin{array}{ccc|ccc}1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 1 & 2 & 2 & 0 & 1 & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2 - f_1} \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc} 1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 0 & 4 & 2 & -1 & 1 & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right)

We gaan verder met de tweede kolom: we transformeren eerst de 4 in een 1 door de tweede rij door 4 te delen:

\left( \begin{array}{ccc|ccc} 1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 0 & 4 & 2 & -1 & 1 & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1\end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2/4} \\[2ex] &  \end{array} \left( \begin{array}{ccc|ccc} 1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft een 0 in het eerste element van de tweede kolom, waar nu een -2 staat. We moeten dus -2 omzetten naar 0. Om dit te doen, tellen we regel 2 vermenigvuldigd met 2 op bij regel 1:

\begin{array}{lrrr|rcr} & 1 & -2 & 0 & 1 & 0 & 0 \\ + & 0 & 2 & 1 & \vphantom{\Bigl(}\sfrac{-2}{4} & \sfrac{2}{4} & 0 \\ \hline & 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} \vphantom{\Bigl(}& 0 \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_1} \\ \color{blue}\bm{\leftarrow 2f_2}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(} \end{array}

\left( \begin{array}{ccc|ccc} 1 & -2 & 0 & 1 & 0 & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1\end{array} \right) \begin{array}{c} \xrightarrow{f_1 +2f_2} \\[2ex]  \\[2ex] & \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right)

De identiteitsmatrix heeft een 0 in het laatste element van de tweede kolom, waar nu een 3 staat. We moeten de 3 daarom omzetten in een 0. Om dit te doen trekken we van regel 3 regel 2 vermenigvuldigd met 3 af:

\begin{array}{lrrr|crr} & 0 & 3 & 2 & 0 & 0\phantom{0} & 1 \\ + & 0 & -3 & \vphantom{\Bigl(}\sfrac{-6}{4} & \sfrac{3}{4} & \sfrac{-3}{4} & 0 \\ \hline & 0 & 0 & \vphantom{\Bigl(}\sfrac{2}{4} & \sfrac{3}{4} & \sfrac{-3}{4} & 1 \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_3} \\ \color{blue}\bm{\leftarrow -3f_2}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(} \end{array}

\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 3 & 2 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{f_3 -3f_2} \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 0 &\sfrac{2}{4} & \sfrac{3}{4} & \sfrac{-3}{4} & 1  \end{array} \right)

We gaan verder met de derde kolom: we moeten de laatste transformeren

\sfrac{2}{4}

omzetten in een 1. Om dit te doen, vermenigvuldigen we de derde regel met 2:

\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 0 &\sfrac{2}{4} & \sfrac{3}{4} & \sfrac{-3}{4} & 1   \end{array} \right) \begin{array}{c} \\[2ex]  \\[2ex] \xrightarrow{2f_3 } \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 0 & 1 & \sfrac{6}{4} & \sfrac{-6}{4} & 2   \end{array} \right)

De identiteitsmatrix heeft een 0 in het tweede element van de laatste kolom. Het is daarom noodzakelijk om de

\sfrac{2}{4}

omzetten in een 0. Om dit te doen, trekken we van regel 2 regel 3 gedeeld door 2 af:

\begin{array}{lrrr|ccr} & 0 & 1 & \vphantom{\Bigl(} \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\ + & 0 & 0 & \vphantom{\Bigl(} \sfrac{-1}{2} & \sfrac{-6}{8} & \sfrac{6}{8} & -1  \\ \hline & 0 & 1 & 0\phantom{0} & -1 & 1 & -1\vphantom{\Bigl(} \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_2}\vphantom{\Bigl(}  \\ \color{blue}\bm{\leftarrow -f_3/2}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(} \end{array}

\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & \sfrac{2}{4} & \sfrac{-1}{4} & \sfrac{1}{4} & 0 \\[2ex] 0 & 0 & 1 & \sfrac{6}{4} & \sfrac{-6}{4} & 2 \end{array} \right) \begin{array}{c} \\[2ex] \xrightarrow{f_2-f_3/2 } \\[2ex] & \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & 0 & -1 & 1 & -1 \\[2ex] 0 & 0 & 1 & \sfrac{6}{4} & \sfrac{-6}{4} & 2   \end{array} \right)

Het enige wat we nu nog moeten doen is het eerste element van de derde kolom omzetten naar 0. Om dit te doen trekken we rij 3 af van rij 1:

\begin{array}{lrrr|rcr} & 1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \vphantom{\Bigl(} \\ + & 0 & 0 & -1 & \sfrac{-6}{4} & \sfrac{6}{4} & -2 \vphantom{\Bigl(}  \\ \hline & 1 & 0 & 0 & -1 & 2 & -2 \vphantom{\Bigl(} \end{array} \begin{array}{l} \color{blue}\bm{\leftarrow f_1}\vphantom{\Bigl(}  \\ \color{blue}\bm{\leftarrow -f_3}\vphantom{\Bigl(} \\ \phantom{hline} \vphantom{\Bigl(} \end{array}

\left( \begin{array}{ccc|ccc}1 & 0 & 1 & \sfrac{2}{4} & \sfrac{2}{4} & 0 \\[2ex] 0 & 1 & 0 & -1 & 1 & -1 \\[2ex] 0 & 0 & 1 & \sfrac{6}{4} & \sfrac{-6}{4} & 2 \end{array} \right) \begin{array}{c} \xrightarrow{f_1-f_3 }  \\[2ex] \\[2ex] & \end{array} \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -1 & 2 & -2 \\[2ex] 0 & 1 & 0 & -1 & 1 & -1 \\[2ex] 0 & 0 & 1 & \sfrac{6}{4} & \sfrac{-6}{4} & 2   \end{array} \right)

De inverse matrix is dus:

A^{-1}= \left(  \begin{array}{ccc}  -1  & 2 & -2 \\[2ex]  -1 & 1 & -1 \\[2ex] \sfrac{6}{4} &\sfrac{-6}{4} & 2 \end{array} \bm{ \right)}

Ten slotte kunnen de fracties van de inverse matrix worden vereenvoudigd:

\bm{A^{-1}= \left( } \begin{array}{ccc}  \bm{-1} & \bm{2}  & \bm{-2} \\[2ex]  \bm{-1} & \bm{1} & \bm{-1} \\[2ex] \sfrac{\bm{3}}{\bm{2}} &\sfrac{\bm{-3}}{\bm{2}} & \bm{2} \end{array} \bm{ \right)}

Inverse matrixeigenschappen

De inverse matrix heeft de volgende kenmerken:

  • De inverse van een matrix is uniek .
  • De inverse van de inverse matrix is de oorspronkelijke matrix:

\left(A^{-1}\right)^{-1} = A

  • De inverse van de vermenigvuldiging van twee matrices is gelijk aan het product van de inverse van de matrices, maar verandert hun volgorde.

\left(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}

  • Het transponeren van een matrix en vervolgens de inverse van de matrix uitvoeren, is hetzelfde als eerst de inversie van de matrix uitvoeren en deze vervolgens transponeren.

\left(A^t\right)^{-1} = \left(A^{-1}\right)^{t}

  • Om de determinant van de inverse van een matrix op te lossen, kunnen we de determinant van de matrix berekenen en vervolgens de inverse ervan uitvoeren, aangezien de twee bewerkingen hetzelfde resultaat opleveren.

\displaystyle det\left(A^{-1}\right) =\bigl( det(A) \bigr) ^{-1} = \cfrac{1}{det(A)}

Formule om snel de inverse van een 2×2 matrix te berekenen

Zoals we hebben gezien kan elke matrix worden omgekeerd door de methode van determinanten of door de Gauss-methode. Maar afzonderlijk bestaat er ook een formule om heel snel de inverse van een 2×2 matrix te vinden :

formule om de inverse van een 2x2-matrix te vinden, inverse matrixformule 2x2

Zoals je kunt zien, is het inverteren van een 2×2-matrix eenvoudig: los gewoon de determinant van de matrix op

(|A|)

, wissel de positie van de elementen van de hoofddiagonaal af en verander het teken van de elementen van de secundaire diagonaal.

Voorbeeld van hoe u een 2 × 2 inverse matrix kunt krijgen met de formule

Bereken de inverse van de volgende 2 × 2 vierkante matrix:

\displaystyle  A = \begin{pmatrix} 3 & 5 \\[1.1ex] -2 & -4 \end{pmatrix}

De determinant van matrix A is:

\displaystyle  \begin{aligned}\begin{vmatrix}A\end{vmatrix} = \begin{vmatrix} 3 & 5 \\[1.1ex] -2 & -4 \end{vmatrix} & = 3 \cdot (-4)- (-2) \cdot 5 \\ & = -12-(-10) \\[2ex] & =-12+10\\[2ex] &=-2\end{aligned}

Nu passen we de inverse matrixformule toe:

\displaystyle A = \begin{pmatrix} a & b \\[1.1ex] c & d \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{|A|} \begin{pmatrix} d & -b \\[1.1ex] -c & a \end{pmatrix}

\displaystyle A = \begin{pmatrix} 3 & 5 \\[1.1ex] -2 & -4 \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{-2} \begin{pmatrix} -4 & -5 \\[1.1ex] 2 & 3 \end{pmatrix}

En we vermenigvuldigen de matrix met de breuk:

\displaystyle  A^{-1} =\begin{pmatrix} \cfrac{-4}{-2} & \cfrac{-5}{-2} \\[3ex] \cfrac{2}{-2} & \cfrac{3}{-2} \end{pmatrix}

De omgekeerde matrix A is daarom:

\displaystyle  \bm{A^{-1} =}\begin{pmatrix} \bm{2} & \cfrac{\bm{5}}{\bm{2}} \\[3ex] \bm{-1} & \bm{-}\cfrac{\bm{3}}{\bm{2}} \end{pmatrix}

Zoals u kunt zien, gaat het omkeren van een matrix met deze formule veel sneller, maar deze formule kan alleen worden gebruikt op matrices met afmeting 2×2.

Opgeloste oefeningen van 2×2 inverse matrices met de formule

Oefening 1

Inverteer de volgende matrix met afmeting 2×2:

\displaystyle A=\begin{pmatrix} 2 & 5 \\[1.1ex] 1 & 3 \end{pmatrix}

De determinant van matrix A is:

\displaystyle  \begin{aligned}\begin{vmatrix}A\end{vmatrix} = \begin{vmatrix} 2 & 5 \\[1.1ex] 1 & 3 \end{vmatrix} & = 2 \cdot 3- 1 \cdot 5 \\ & = 6-5 \\[2ex] & =1\end{aligned}

Nu passen we de formule toe om de inverse matrix te vinden:

\displaystyle A = \begin{pmatrix} a & b \\[1.1ex] c & d \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{|A|} \begin{pmatrix} d & -b \\[1.1ex] -c & a \end{pmatrix}

\displaystyle  A=\begin{pmatrix} 2 & 5 \\[1.1ex] 1 & 3 \end{pmatrix} \longrightarrow A^{-1} = \cfrac{1}{1} \begin{pmatrix} 3 & -5 \\[1.1ex] -1 & 2 \end{pmatrix}

De inverse van matrix A is daarom:

\displaystyle  \bm{A^{-1} =}\begin{pmatrix} \bm{3} & \bm{-5} \\[1.1ex] \bm{-1} & \bm{2} \end{pmatrix}

Oefening 2

Bereken de inverse van de volgende matrix van orde 2:

\displaystyle A=\begin{pmatrix} 2 & 6 \\[1.1ex] -1 & -2 \end{pmatrix}

De determinant van matrix A is:

\displaystyle  \begin{aligned}\begin{vmatrix}A\end{vmatrix} = \begin{vmatrix} 2 & 6 \\[1.1ex] -1 & -2 \end{vmatrix} & = 2 \cdot (-2)- (-1) \cdot 6 \\ & = -4-(-6) \\[2ex] & =-4+6 \\[2ex] & =2\end{aligned}

We passen nu de formule toe om de inverse matrix van dimensie 2×2 op te lossen:

\displaystyle A = \begin{pmatrix} a & b \\[1.1ex] c & d \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{|A|} \begin{pmatrix} d & -b \\[1.1ex] -c & a \end{pmatrix}

\displaystyle  A=\begin{pmatrix} 2 & 6 \\[1.1ex] -1 & -2 \end{pmatrix} \longrightarrow A^{-1} = \cfrac{1}{2} \begin{pmatrix} -2 & -6 \\[1.1ex] 1 & 2 \end{pmatrix}

En tenslotte doen we de vermenigvuldiging:

\displaystyle  A^{-1} = \begin{pmatrix} \cfrac{-2}{2} & \cfrac{-6}{2} \\[3ex] \cfrac{1}{2} & \cfrac{2}{2} \end{pmatrix}

\displaystyle  \bm{A^{-1} =}\begin{pmatrix} \bm{-1} & \bm{-3} \\[2ex] \cfrac{\bm{1}}{\bm{2}} & \bm{1} \end{pmatrix}

Oefening 3

Inverteer de volgende 2×2-matrix:

\displaystyle A=\begin{pmatrix} 4 & 1 \\[1.1ex] 5 & 2 \end{pmatrix}

De determinant van matrix A is:

\displaystyle  \begin{aligned}\begin{vmatrix}A\end{vmatrix} = \begin{vmatrix} 4 & 1 \\[1.1ex] 5 & 2\end{vmatrix} & = 4 \cdot 2 - 5 \cdot 1 \\ & = 8-5 \\[2ex] &  =3\end{aligned}

We passen nu de formule toe om de inverse matrix van dimensie 2×2 te berekenen:

\displaystyle A = \begin{pmatrix} a & b \\[1.1ex] c & d \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{|A|} \begin{pmatrix} d & -b \\[1.1ex] -c & a \end{pmatrix}

\displaystyle  A=\begin{pmatrix} 4 & 1 \\[1.1ex] 5 & 2 \end{pmatrix} \longrightarrow A^{-1} = \cfrac{1}{3} \begin{pmatrix} 2 & -1 \\[1.1ex] -5 & 4 \end{pmatrix}

En tenslotte doen we het product tussen de breuk en de matrix:

\displaystyle  A^{-1} = \begin{pmatrix} \cfrac{\bm{2}}{\bm{3}} & \bm{-}\cfrac{\bm{1}}{\bm{3}} \\[3ex] \bm{-}\cfrac{\bm{5}}{\bm{3}} & \cfrac{\bm{4}}{\bm{3}} \end{pmatrix}

Oefening 4

Zoek de inverse van de volgende tweede-orde matrix:

\displaystyle A=\begin{pmatrix} -2 & 5 \\[1.1ex] -3 & 10 \end{pmatrix}

De determinant van matrix A is:

\displaystyle  \begin{aligned}\begin{vmatrix}A\end{vmatrix} = \begin{vmatrix} -2 & 5 \\[1.1ex] -3 & 10\end{vmatrix} & = (-2) \cdot 10- (-3) \cdot 5 \\ & = -20-(-15) \\[2ex] & =-20+15 \\[2ex] & =-5\end{aligned}

Nu passen we de formule toe om de inverse matrix van dimensie 2×2 te creëren:

\displaystyle A = \begin{pmatrix} a & b \\[1.1ex] c & d \end{pmatrix}\longrightarrow A^{-1} = \cfrac{1}{|A|} \begin{pmatrix} d & -b \\[1.1ex] -c & a \end{pmatrix}

\displaystyle  A=\begin{pmatrix} -2 & 5 \\[1.1ex] -3 & 10\end{pmatrix} \longrightarrow A^{-1} = \cfrac{1}{-5} \begin{pmatrix} 10 & -5 \\[1.1ex] 3 & -2 \end{pmatrix}

En tenslotte doen we de vermenigvuldiging:

\displaystyle  A^{-1} = \begin{pmatrix} \cfrac{10}{-5} & \cfrac{-5}{-5} \\[3ex] \cfrac{3}{-5} & \cfrac{-2}{-5} \end{pmatrix}

\displaystyle  \bm{A^{-1} =}\begin{pmatrix} \bm{-2} & \bm{1} \\[2ex] \bm{-}\cfrac{\bm{3}}{\bm{5}} & \cfrac{\bm{2}}{\bm{5}} \ \end{pmatrix}

Los een stelsel vergelijkingen op met de inverse matrix

Het is moeilijk om de echte toepassingen van de inverse van een matrix te begrijpen. Sterker nog, je vraagt je waarschijnlijk af… waar wordt de inverse matrix voor gebruikt? Wordt het echt ergens voor gebruikt?

Welnu, een van de toepassingen van de inverse matrix is het oplossen van stelsels van lineaire vergelijkingen . En ja, ook al lijken het misschien twee heel verschillende concepten, het is mogelijk om de oplossing van een stelsel vergelijkingen te vinden door een matrix om te keren.

Laten we met een voorbeeld zien hoe dit wordt gedaan:

  • Bereken de oplossing van het volgende stelsel vergelijkingen met de inverse matrix:

\left. \begin{array}{r} x+3y=5 \\[2ex] 2x+4y=6 \end{array} \right\}

Allereerst moet worden opgemerkt dat een systeem van vergelijkingen kan worden uitgedrukt in de vorm van matrices:

\displaystyle \begin{pmatrix} 1 & 3 \\[1.1ex] 2 & 4 \end{pmatrix}\begin{pmatrix} x \\[1.1ex]y \end{pmatrix} = \begin{pmatrix} 5 \\[1.1ex] 6 \end{pmatrix}

We kunnen verifiëren dat deze matrixvorm van het systeem equivalent is aan de uitdrukking met vergelijkingen: als we de matrices vermenigvuldigen, zullen we zien dat we de twee vergelijkingen van het systeem verkrijgen.

Om de volgende stappen te vereenvoudigen, zullen we bellen

A

naar de matrix die de coëfficiënten van de onbekenden heeft,

X

naar de matrixkolommen met de onbekenden, en

B

naar de kolommatrix met onafhankelijke termen:

\displaystyle AX=B

De matrix dus

X

is de onbekende van de matrixvergelijking.

Om deze matrixvergelijking op te lossen, moet u een procedure volgen die we hier niet zo gedetailleerd zullen uitleggen. Als je het helemaal wilt begrijpen, kun je kijken hoe je vergelijkingen met matrices oplost, waar we het hele proces stap voor stap uitleggen.

Deze procedure is gebaseerd op een eigenschap van inverse matrices: elke matrix vermenigvuldigd met zijn inverse is gelijk aan de identiteitsmatrix (of eenheidsmatrix). Daarom kan de onbekende matrix eenvoudig worden opgelost

X

door beide zijden van de vergelijking te vermenigvuldigen met de inverse van matrix A:

\displaystyle AX=B

\displaystyle A^{-1}\cdot AX=A^{-1}\cdot B

\displaystyle IX=A^{-1}\cdot B

\displaystyle X=A^{-1}\cdot B

En zodra we de matrix hebben geïsoleerd

X

, berekenen we het omgekeerde van

A

en we lossen het product van matrices op:

\displaystyle X=\left.\begin{pmatrix} 1 & 3 \\[1.1ex] 2 & 4 \end{pmatrix}\right.^{-1}\cdot \begin{pmatrix} 5 \\[1.1ex] 6 \end{pmatrix}

\displaystyle X=\cfrac{1}{-2} \begin{pmatrix} 4 & -3 \\[1.1ex] -2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 5 \\[1.1ex] 6 \end{pmatrix}

\displaystyle X= \begin{pmatrix} -1 \\[1.1ex] 2 \end{pmatrix}

De oplossing van het stelsel vergelijkingen is daarom:

\displaystyle \bm{x=-1} \qquad \bm{y=2}

Laat een reactie achter

Je e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

Scroll naar boven