이 페이지에서는 행렬 방정식이 무엇인지, 그리고 이를 푸는 방법을 배우게 됩니다. 또한 행렬이 포함된 방정식의 예제와 해결 연습도 찾을 수 있습니다.
행렬 방정식이란 무엇입니까?
행렬 방정식은 일반 방정식과 유사하지만 숫자로 구성되지 않고 행렬로 구성됩니다. 예를 들어:
![]()
따라서 솔루션 X도 행렬이 됩니다.
이미 알고 있듯이 행렬은 분할될 수 없습니다. 따라서 행렬 X는 방정식의 반대쪽에 곱한 행렬을 나누어서 정리할 수 없습니다.
![]()
반대로 X 행렬을 클리어하려면 전체적인 과정을 거쳐야 한다. 이제 해결된 연습문제를 통해 행렬 방정식을 푸는 방법을 살펴보겠습니다.
행렬 방정식을 푸는 방법. 예:
- 다음 행렬 방정식을 푼다:
![]()
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9727c78818a9661573310f22ec2fb3cf_l3.png)
가장 먼저 해야 할 일은 행렬 X를 푸는 것입니다. 따라서 방정식의 반대쪽에서 행렬 B를 뺍니다 .
![]()
![]()
클리어를 완료하려면 매트릭스를 분할할 수 없습니다. 하지만 우리는 다음을 수행해야 합니다:
우리는 방정식의 양변에 행렬 X를 곱하는 행렬의 역함수를 곱하고, 추가적으로 상기 행렬이 위치한 변을 양변에 곱해야 합니다.
이 경우 X를 곱하는 행렬은 A이고 왼쪽에 있습니다. 따라서 우리는 방정식의 좌변에 A (A -1 )의 역수를 곱합니다.
![]()
![]()
역행렬을 곱한 행렬은 단위행렬과 같습니다. 아직
![]()
![]()
단위 행렬을 곱한 모든 행렬은 동일한 행렬을 제공합니다. 아직:
![]()
그리고 이런 방식으로 우리는 이미 X를 지웠습니다. 이제 행렬 연산을 수행하면 됩니다. 따라서 먼저 A의 2 × 2 역행렬을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b79c0ae6349ac5ac0267e179e641b66e_l3.png)
![]()
행렬 A의 수반을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1eb7c7a828453c5310d59386f0303b83_l3.png)
그리고 수반 행렬이 발견되면 역행렬을 결정하기 위해 전치행렬 계산을 진행합니다.
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aa12c355319a6894e76343c9cb9185d3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a2fd06e0ad4a2a18560f644b718dadf4_l3.png)
이제 X를 계산하기 위해 모든 행렬을 표현식으로 대체합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-99716e9accb7ee578fb1119d4e800e4f_l3.png)
그리고 우리는 행렬을 사용하여 연산을 해결합니다. 먼저 행렬을 빼서 괄호를 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d07c28ad6104e391605836ecdd297251_l3.png)
그리고 마지막으로 행렬을 곱합니다.
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b28076f6ab18dc77a0083388046c5cd1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7d20e85150a382ba9f11bf328b866834_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3e7ebae094a92690d97b614b0487a4_l3.png)
해결 행렬 방정식 문제
연습하고 개념을 잘 이해할 수 있도록 몇 가지 해결된 행렬 방정식을 아래에 남겨둡니다. 연습을 해보고 솔루션에 성공했는지 확인할 수 있습니다. 댓글에서 발생하는 질문을 우리에게 물어볼 수도 있다는 것을 잊지 마십시오.
연습 1
BE
![]()
그리고
![]()
다음과 같은 2×2 차원의 정사각형 행렬:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f40b96fc0f1047fb0c39a7d41be04ea_l3.png)
행렬 계산
![]()
이는 다음 행렬 방정식을 만족합니다.
![]()
먼저 매트릭스를 비워야 합니다.
![]()
행렬 방정식:
![]()
![]()
![]()
![]()
일단 매트릭스를 가지면
![]()
명확합니다. 행렬을 사용하여 작업하면 됩니다. 따라서 먼저 A의 역행렬을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2fb5c4785b78010fcac56e1189338b99_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7c4d4a6bfca6d2eedde52937c8ee0917_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-695a05e4176ced4a4beaec27ce201b4a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a12ae8d0ae9ce16f04540ecd1a0ac907_l3.png)
이제 방정식의 모든 행렬을 대체하여 행렬을 계산합니다.
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-92d5f580fddfc830181cde2e67013987_l3.png)
그리고 마지막으로 행렬의 곱셈을 수행합니다.
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-787643b41cb362e276b8f80c9211fb52_l3.png)
연습 2
BE
![]()
,
![]()
그리고
![]()
다음 차수 2 행렬:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f4f1f244d15039c64282a9fe347cee4_l3.png)
행렬 계산
![]()
이는 다음 행렬 방정식을 만족합니다.
![]()
가장 먼저 해야 할 일은 행렬을 비우는 것입니다.
![]()
행렬 방정식:
![]()
![]()
![]()
![]()
![]()
매트릭스를 분리한 후에는
![]()
, 행렬을 사용하여 작업해야 합니다. 따라서 먼저 B의 역행렬을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-33c4a446ecdc391935728843e6a34964_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4850852b0e29a3d530b32dc1cd635499_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8817da5e89bc39e89bd17390cfd61c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a5fc342354f6410cb87fa6b0ddf833a4_l3.png)
이제 방정식의 모든 행렬을 대체하여 행렬을 계산합니다.
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-79abf2abf8a29e6357f65a1b62c9a80f_l3.png)
행렬을 빼서 괄호를 풉니다.
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f5141a4cb61be8db15676e185b10767f_l3.png)
그리고 마지막으로 행렬을 곱합니다.
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1d5482b1eb8fd6af1d6c61547b05c0bc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-779a021183e139f0e138fbc288d4adea_l3.png)
연습 3
BE
![]()
,
![]()
그리고
![]()
다음 2차 행렬:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6292882d305055e4e8fb287a4bc93b71_l3.png)
매트릭스를 찾아라
![]()
이는 다음 행렬 방정식을 만족합니다.
![]()
먼저 매트릭스를 지워야 합니다.
![]()
행렬 방정식:
![]()
![]()
![]()
![]()
매트릭스를 비운 후에는
![]()
, 행렬을 사용하여 작업해야 합니다. 따라서 먼저 A의 역행렬을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b09ce42998b548267e70e47b135b6508_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2a29b310de613bc1ec42a6e1452db147_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c0e0b895fed20ba908417f6ee3482ce0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c19685457cd40098cadf6eeff41405d5_l3.png)
그리고 행렬 B도 반전합니다.
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d3f5048394796b2378c8197c9c9c1cb7_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-261eb432e305f5df596fc1dff9f183d7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-96d40ae8aa7c350c8a63d57d06b6fa6d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-80ee47f61b0671b42f9df06e7f384847_l3.png)
이제 모든 행렬을 표현식에 대체하여 행렬을 계산합니다.
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-de94e47503b17f761f7fcb764f4def59_l3.png)
먼저 왼쪽의 곱셈을 푼다.
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ca95f4870d5be13a3f7e241e5a40934b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3df7709b9d5c5f5194744d4c88d2cb66_l3.png)
그리고 마지막으로 나머지 곱셈을 수행합니다.
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d83b02b8768a7e95ee71b7782d7759_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4b3a393915b3c49bdf9dd9ee6ada5020_l3.png)
연습 4
BE
![]()
그리고
![]()
다음과 같은 차원 3×3 행렬:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da8b3d05ecc85eea72fd7d14c282f58c_l3.png)
행렬 계산
![]()
이는 다음 행렬 방정식을 만족합니다.
![]()
먼저 행렬을 지웁니다.
![]()
행렬 방정식:
![]()
![]()
![]()
![]()
![]()
![]()
매트릭스를 분리한 후에는
![]()
, 행렬을 사용하여 작업해야 합니다. 따라서 먼저 A의 역행렬을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1a92fa898838b531bf1b51356dbbb2de_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\ -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 1\\ 0 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9cc1a5bb552d5eadacef8677265cba0a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1 & 0 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e668ed3a6e233bed8245f99e80638633_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1 & -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeb999734b9ba4b6e9a01e788bee6649_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f8f2379d6d616b29b78005aaafe39f29_l3.png)
이제 X를 계산하기 위해 모든 행렬을 표현식으로 대체합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-c91b944756316c7cde33eb90743d54d6_l3.png)
행렬 B를 전치합니다:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-3a81f0c3d7367d756d53221e9c56d1e3_l3.png)
행렬을 빼서 괄호를 푼다:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5f822e84288230368a5c0918c79398bf_l3.png)
마지막으로 행렬 곱셈을 수행합니다.
![Rendered by QuickLaTeX.com \displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3} & \bm{-6} & \bm{9} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-552e3809229102041ddf02a78badfea0_l3.png)