이 페이지에서는 고유값과 고유벡터(각각 고유값 및 고유벡터라고도 함)가 무엇인지 설명합니다. 또한 이를 계산하는 방법에 대한 예제와 연습할 수 있는 단계별 해결 연습도 찾을 수 있습니다.
고유값과 고유벡터란 무엇입니까?
고유값과 고유벡터의 개념은 이해하기 어렵지만 정의는 다음과 같습니다.
고유벡터 또는 고유벡터 는 선형 맵의 0이 아닌 벡터로, 변환 시 스칼라 배수가 발생합니다(방향은 변경되지 않음). 이 스칼라는 고유값 또는 고유값 입니다.
![]()
금
![]()
선형 맵의 행렬입니다.
![]()
고유벡터이고
![]()
자신의 가치.
고유값은 특성값이라고도 합니다. 그리고 고유값과 고유벡터를 지정하기 위해 독일어 루트 “고유”를 사용하는 수학자도 있습니다. 즉, 고유값의 고유 값 과 고유벡터 의 고유벡터입니다.
행렬의 고유값(또는 고유값)과 고유벡터(또는 고유벡터)를 계산하는 방법은 무엇입니까?
행렬의 고유값과 고유벡터를 찾으려면 전체 절차를 따라야 합니다.
- 행렬의 특성 방정식은 다음 행렬식을 풀어 계산됩니다.
- 1단계에서 얻은 특성 다항식의 근을 찾습니다. 이 근은 행렬의 고유값입니다.
- 각 고유값의 고유벡터가 계산됩니다. 이를 위해 각 고유값에 대해 다음 방정식 시스템이 해결됩니다.
![]()
![]()
![]()
이것은 행렬의 고유값과 고유벡터를 찾는 방법이지만 여기서는 몇 가지 팁도 제공합니다. 😉
팁 : 고유값과 고유벡터의 속성을 활용하여 더 쉽게 계산할 수 있습니다.
✓ 행렬의 자취(주대각선의 합)는 모든 고유값의 합과 같습니다.
![]()
✓ 모든 고유값의 곱은 행렬의 행렬식과 같습니다.
![]()
✓ 행이나 열 사이에 선형 결합이 있는 경우 행렬의 고유값 중 하나 이상이 0입니다.
방법을 더 잘 이해하기 위해 행렬의 고유벡터와 고유값을 계산하는 방법에 대한 예를 살펴보겠습니다.
행렬의 고유값과 고유벡터를 계산하는 예:
- 다음 행렬의 고유값과 고유벡터를 구합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}1&0\\[1.1ex] 5&2\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e82dbe4f6e975e1374cab2c1b74638b9_l3.png)
먼저 행렬의 특성방정식을 찾아야 한다. 그리고 이를 위해서는 다음 행렬식을 해결해야 합니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1- \lambda &0\\[1.1ex] 5&2-\lambda \end{vmatrix} = \lambda^2-3\lambda +2](https://mathority.org/wp-content/ql-cache/quicklatex.com-283812fe5eed97f58568fb6e515e3ff5_l3.png)
이제 특성 다항식의 근을 계산하므로 얻은 결과를 0과 동일하게 만들고 방정식을 풉니다.
![]()
![Rendered by QuickLaTeX.com \lambda= \cfrac{-(-3)\pm \sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot 1} = \cfrac{+3\pm 1}{2}=\begin{cases} \lambda = 1 \\[2ex] \lambda = 2 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fdee5858b8b0187078ea372d9362900f_l3.png)
방정식의 해는 행렬의 고유값입니다.
고유값을 얻은 후에는 고유벡터를 계산합니다. 이를 위해서는 각 고유값에 대해 다음 시스템을 풀어야 합니다.
![]()
먼저 고유값 1과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle (A-1 I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f0cbd7a7e0670410881dcc0bfd4969c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}0&0\\[1.1ex] 5&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e1f49b7ecec643964e4a14cd17ddecb4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 0x+0y = 0 \\[2ex] 5x+y = 0\end{array}\right\}](https://mathority.org/wp-content/ql-cache/quicklatex.com-06473aeaa487551bca2eb98ff786c8f5_l3.png)
이 방정식으로부터 다음과 같은 부분공간을 얻습니다.
![]()
고유벡터 부분공간은 고유공간이라고도 합니다.
이제 우리는 이 깨끗한 공간의 기반을 찾아야 하므로 예를 들어 변수에 값 1을 제공합니다.
![]()
그리고 우리는 다음과 같은 고유벡터를 얻습니다:
![]()
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -5\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-8af03064a8f197990df832e71472cab0_l3.png)
마지막으로 고유값 1과 관련된 고유벡터를 찾으면 고유값 2에 대한 고유벡터를 계산하는 프로세스를 반복합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle (A-2I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3d52ccfc2cbc996d3844af6c699a81b2_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-1&0\\[1.1ex] 5&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-24442a53901cc9f0622aecf66ef2dc25_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -x+0y = 0 \\[2ex] 5x+0y = 0\end{array}\right\} \longrightarrow \ x=0](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbd3a434bf3f89ed38a893a98befee97_l3.png)
이 경우 벡터의 첫 번째 구성요소만 0이어야 하므로 원하는 값을 지정할 수 있습니다.
![]()
. 그러나 더 쉽게 하려면 1을 입력하는 것이 좋습니다.
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f47b6a21a448d003d909c0c1c969b8f6_l3.png)
결론적으로, 행렬의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -5 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1668ed5f36ad0a8fcb28a264c76b6163_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-56b0287c0bea71a1e5a258373aaa47d9_l3.png)
행렬의 고유값과 고유벡터를 찾는 방법을 알게 되면 궁금할 것입니다. 그리고 그것들은 무엇을 위한 것일까요? 글쎄, 그들은 행렬 대각화 에 매우 유용하다는 것이 밝혀졌습니다. 실제로 이것이 주요 응용 프로그램입니다. 더 자세히 알아보려면 링크를 통해 행렬을 대각화하는 방법을 확인하는 것이 좋습니다. 절차가 단계별로 설명되어 있고 연습할 수 있는 예제와 해결된 연습 문제도 있습니다.
고유값 및 고유벡터(고유값 및 고유벡터)에 대한 해결된 연습 문제
연습 1
다음 2차 정사각 행렬의 고유값과 고유벡터를 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}3&1\\[1.1ex] 2&4\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0c6e3869ea2848140f026afc2ff8d554_l3.png)
먼저 행렬의 주대각선에서 λ를 뺀 행렬식을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}3- \lambda &1\\[1.1ex] 2&4-\lambda \end{vmatrix} = \lambda^2-7\lambda +10](https://mathority.org/wp-content/ql-cache/quicklatex.com-fadce42062bb04b7477318fdc35c4285_l3.png)
이제 특성 다항식의 근을 계산해 보겠습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda^2-7\lambda +10=0 \ \longrightarrow \ \begin{cases} \lambda = 2 \\[2ex] \lambda = 5 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7139127430fa6b78b78715d57a6fdf1f_l3.png)
고유값 2와 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}1&1\\[1.1ex] 2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-614f9247b0d79635f70ec79eaa8c6529_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} x+y = 0 \\[2ex] 2x+2y = 0\end{array}\right\} \longrightarrow \ x=-y](https://mathority.org/wp-content/ql-cache/quicklatex.com-272495fa6e8f89ba4e7c6a6d848cb38a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-77c240aaa8b75f1e5353c295ee86ad50_l3.png)
그런 다음 고유값 5와 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-2&1\\[1.1ex] 2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8aa7cae3057d78343128cd1095df24e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+y = 0 \\[2ex] 2x-y = 0\end{array}\right\} \longrightarrow \ y=2x](https://mathority.org/wp-content/ql-cache/quicklatex.com-d8c38e500cf7103b1dc0e91ea1b4531a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-8be56f81b5aef28783636f85c4dbd643_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-cde889d89562f2e42bd6610b0045c118_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3e954ba60fdc7eba60ba8530980854c5_l3.png)
연습 2
다음 2×2 정사각 행렬의 고유값과 고유벡터를 결정합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&1\\[1.1ex] 3&0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-54b0188c9fbadd6c3e35315443b71efd_l3.png)
먼저 특성 방정식을 얻기 위해 주 대각선에서 행렬 빼기 λ를 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2- \lambda &1\\[1.1ex] 3&-\lambda \end{vmatrix} = \lambda^2-2\lambda -3](https://mathority.org/wp-content/ql-cache/quicklatex.com-88fcd3b21ad2fa5a4d1d7789a86043e5_l3.png)
이제 특성 다항식의 근을 계산해 보겠습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda^2-2\lambda -3=0 \ \longrightarrow \ \begin{cases} \lambda = -1 \\[2ex] \lambda = 3 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2614817b28bdb25c4fd89d4c773b4e35_l3.png)
고유값 -1과 관련된 고유벡터를 계산합니다.
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 3&1\\[1.1ex] 3&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e4b3d926f1a25454c3e645d79b28887d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 3x+1y = 0 \\[2ex] 3x+1y = 0\end{array}\right\} \longrightarrow \ y=-3x](https://mathority.org/wp-content/ql-cache/quicklatex.com-a7a6529e3ed8eb1607caa88475bcbb8f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-67716508d5a9772f98c3f006f012dff1_l3.png)
그런 다음 고유값 3과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-1&1\\[1.1ex] 3&-3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-20e5d0be7e6dbe91bf15c835dac63b38_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -1x+1y = 0 \\[2ex] 3x-3y = 0\end{array}\right\} \longrightarrow \ y=x](https://mathority.org/wp-content/ql-cache/quicklatex.com-8355b1ade79ba1508633f309926bc221_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f3cac5769795f1730fcbf118fdfbbc3_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-95e2b0bf0405bc0c301600cbb4b2b28a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6322d97c5d24c1227b06dddf4b0974c0_l3.png)
연습 3
다음 3차 행렬의 고유값과 고유벡터를 결정합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}1&2&0\\[1.1ex] 2&1&0\\[1.1ex] 0&1&2\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a0e4f4147cbc9e0b657ff432f64bc8e2_l3.png)
특성 방정식을 얻기 위해 먼저 행렬 A에서 단위 행렬에 람다를 곱한 행렬식을 풀어야 합니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0af2ff4694103925883916b6a974c84d_l3.png)
이 경우 행렬식의 마지막 열에는 두 개의 0이 있으므로 이를 활용하여 이 열을 통해 보조인자(또는 보수)에 의한 행렬식을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}& = (2-\lambda)\cdot \begin{vmatrix}1-\lambda&2\\[1.1ex] 2&1-\lambda \end{vmatrix} \\[3ex] & = (2-\lambda)[\lambda^2 -2\lambda -3] \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ec7e7a2ec96b8d0721392c28838d105e_l3.png)
이제 특성 다항식의 근을 계산해야 합니다. 괄호를 곱하지 않는 것이 더 좋습니다. 그러면 3차 다항식을 얻을 수 있기 때문입니다. 반면에 두 인수를 별도로 풀면 고유값을 얻는 것이 더 쉽습니다.
![Rendered by QuickLaTeX.com \displaystyle (2-\lambda)[\lambda^2 -2\lambda -3]=0 \ \longrightarrow \ \begin{cases} 2-\lambda=0 \ \longrightarrow \ \lambda = 2 \\[2ex] \lambda^2 -2\lambda -3=0 \ \longrightarrow \begin{cases}\lambda = -1 \\[2ex] \lambda = 3 \end{cases} \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-adbfb1815d4a480c0584dfee1d8039fb_l3.png)
고유값 2와 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -1&2&0\\[1.1ex] 2&-1&0\\[1.1ex] 0&1&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a6a12c460df4d2f44709c4fd595193dc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -x+2y = 0 \\[2ex] 2x-y = 0\\[2ex] y=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=0 \\[2ex] x=y=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5c24e4b7b060a826203e3a049ddfc191_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-75ebf6f61121b67afd80cdcec30a1709_l3.png)
고유값 -1과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&2&0\\[1.1ex] 2&2&0\\[1.1ex] 0&1&3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d23c4438a53032df27cc5334d4437c18_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2x+2y = 0 \\[2ex] 2x+2y = 0\\[2ex] y+3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-3z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e023d57d34510e5e8f3a37c20d170e72_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0be9ef18fb17845818bdd9de51dcb114_l3.png)
고유값 3과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&2&0\\[1.1ex] 2&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d0360154b87545dd87e1b0b7bc06f4e7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+2y = 0 \\[2ex] 2x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=y \\[2ex] y=z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8d514791286e43eae4b09d893d528df_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-99f86f65a5a9c69119285377d88f2efa_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fe42249314c1698847242c608bd65843_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d412e1f81df9d6425db73113aaae5cd8_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f581aa37c9698dfb32062777a5a75b11_l3.png)
연습 4
다음 3×3 정사각형 행렬의 고유값과 고유벡터를 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1323184f42d56f070e5b46a75a2e5c4d_l3.png)
먼저 특성 방정식을 얻기 위해 주 대각선에서 행렬 빼기 λ를 풀어서 다음과 같은 행렬식을 얻습니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&1&3\\[1.1ex]-1&1-\lambda&1\\[1.1ex] 1&2&4-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-10\lambda](https://mathority.org/wp-content/ql-cache/quicklatex.com-bc48c8489b25004ef131cc6ced36b929_l3.png)
특성 다항식에서 공통 인자를 추출하고 각 방정식에서 λ를 구합니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda(-\lambda^2+7\lambda-10)=0 \ \longrightarrow \ \begin{cases} \lambda=0\\[2ex] -\lambda^2+7\lambda-10=0 \ \longrightarrow \begin{cases}\lambda = 2 \\[2ex] \lambda = 5 \end{cases} \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-411dab2f65b426c37f8427d81ef13e97_l3.png)
고유값 0과 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bd7ebe2424c6524d522d5bba16d72d33_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2x+y+3z= 0 \\[2ex] -x+y+z= 0\\[2ex] x+2y+4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-\cfrac{2z}{3} \\[4ex] y=-\cfrac{5z}{3} \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-12cd10d2dc8afdb7a045beae4946b64d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}-2 \\[1.1ex] -5\\[1.1ex] 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a34877b285f281c83d7e73fa8eb40b9f_l3.png)
고유값 2와 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 0&1&3\\[1.1ex]-1&-1&1\\[1.1ex] 1&2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbcc697a3be877838fae3507dd3c1b68_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} y+3z = 0 \\[2ex] -x-y+z= 0\\[2ex] x+2y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-3z \\[2ex] x=4z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bb8d470bc7bff9f5d8d5a0245b1e7cbf_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}4\\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-30e589c5ae6b940b901454c296d8342b_l3.png)
고유값 5와 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -3&1&3\\[1.1ex]-1&-4&1\\[1.1ex] 1&2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aaf6f17dedf5eecd1e035b9da59da2c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -3x+y+3z = 0 \\[2ex] -x-4y+z = 0\\[2ex] x+2y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=z \\[2ex] y=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-dca8569528fb4923639dd535e25a0f74_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-308b2f0f597fcc084d8d06d6c45fd3e5_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 0 \qquad v = \begin{pmatrix}-2 \\[1.1ex] -5 \\[1.1ex] 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d8a98f007b72910fcd79622eda19e7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}4 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ee67e876a46b09430d2d73a653f2d743_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-99e4e8b0b837c26991777a294f30d49a_l3.png)
연습 5
다음 3×3 행렬의 고유값과 고유벡터를 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&2&2\\[1.1ex] 1&2&0\\[1.1ex] 0&1&3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a39253beac54a05e9e84d431daf43362_l3.png)
먼저 특성 방정식을 얻기 위해 주 대각선에서 행렬 빼기 λ를 풀어서 다음과 같은 행렬식을 얻습니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&2&2\\[1.1ex] 1&2-\lambda&0\\[1.1ex] 0&1&3-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-14\lambda+8](https://mathority.org/wp-content/ql-cache/quicklatex.com-9392bbf957bee6c445c64192ae96a2ce_l3.png)
Ruffini의 법칙을 사용하여 특성 다항식 또는 최소 다항식의 근을 찾습니다.
![Rendered by QuickLaTeX.com \displaystyle \begin{array}{r|rrrr} & -1&7&-14&8 \\[2ex] 1 & & -1&6&-8 \\ \hline &-1\vphantom{\Bigl)}&6&-8&0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-152ec29207fec8bdac7dabe9e1fbff31_l3.png)
그런 다음 얻은 다항식의 근을 찾습니다.
![Rendered by QuickLaTeX.com \displaystyle -\lambda^2+6\lambda -8=0 \ \longrightarrow \ \begin{cases} \lambda =2 \\[2ex] \lambda = 4 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b92304d107c097ec5712527929011440_l3.png)
따라서 행렬의 고유값은 다음과 같습니다.
![]()
고유값 1과 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1&2&2\\[1.1ex] 1&1&0\\[1.1ex] 0&1&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-981cc7881e44436326a35a7cc36ad26a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} x+2y+2z= 0 \\[2ex] x+y= 0\\[2ex] y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-2z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d928870722dec65e8b48f7175d5dd4ba_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}2 \\[1.1ex] -2\\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da5ca9263773369d5824688b71a31644_l3.png)
고유값 2와 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 0&2&2\\[1.1ex] 1&0&0\\[1.1ex] 0&1&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b9d1686e2947a9bbe1dc10b373128e1e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2y+2z = 0 \\[2ex] x= 0\\[2ex] y+z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-z \\[2ex] x=0\end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6000063fd1cc954e119cd5d73d08c405_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0\\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d47216be7fc08447ac3022a105a086b1_l3.png)
고유값 4와 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&2&2\\[1.1ex] 1&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-15e38e9899a9e8bb47cfbf10a4f05075_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+2y+2z = 0 \\[2ex] x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=2y \\[2ex] y=z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-004d61132ba8eeee123d8614432cbce2_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5871bb6e88776aab87e0239540d43677_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 1 \qquad v = \begin{pmatrix}2\\[1.1ex] -2 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f1ea8e2eff0c179b9872da8f6fab2d4e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-edc6fd09f9c6a12b26518a9103cc6610_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 4 \qquad v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b492e98d771e76e77dc68d2fe2ea92c4_l3.png)
연습 6
다음 4×4 행렬의 고유값과 고유벡터를 구합니다.
![Rendered by QuickLaTeX.com \displaystyle A=\begin{pmatrix}1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5cb04190d6f536d33b22265317441144_l3.png)
특성 방정식을 얻으려면 먼저 주 대각선에서 행렬 빼기 λ의 행렬식을 풀어야 합니다.
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-35cae2dd143d77e22a522b49e8d43f3d_l3.png)
이 경우 행렬식의 마지막 열에는 요소 하나를 제외하고 0만 포함되므로 이를 활용하여 이 열을 통해 보조 인자로 행렬식을 계산합니다.
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}& = (3-\lambda)\cdot \begin{vmatrix}1-\lambda&0&-1\\[1.1ex] 2&-1-\lambda&-3\\[1.1ex] -2&0&2-\lambda\end{vmatrix} \\[3ex] & = (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda] \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-456b0612b308c03fd1643a5ba0f332e5_l3.png)
이제 특성 다항식의 근을 계산해야 합니다. 괄호를 곱하지 않는 것이 더 좋습니다. 그러면 4차 다항식을 얻을 수 있기 때문입니다. 반면에 두 요소를 별도로 풀면 고유값을 계산하는 것이 더 쉽습니다.
![Rendered by QuickLaTeX.com \displaystyle (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda]=0 \ \longrightarrow \ \begin{cases} 3-\lambda=0 \ \longrightarrow \ \lambda = 3 \\[2ex] -\lambda^3 +2\lambda^2 +3\lambda =0 \ \longrightarrow \ \lambda(-\lambda^2 +2\lambda +3) =0 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ef6e59f8631cac087c988004aa512b62_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda(-\lambda^2 +2\lambda +3)=0 \ \longrightarrow \ \begin{cases} \lambda=0 \\[2ex] -\lambda^2 +2\lambda +3=0 \ \longrightarrow \ \begin{cases} \lambda=-1 \\[2ex] \lambda = 3 \end{cases}\end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-786b2892e7045f117498697407d35552_l3.png)
고유값 0과 연관된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f43f22947b29779ef456e4ac7a5d66a0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} w-y = 0 \\[2ex] 2w-x-3y = 0\\[2ex] -2w+2y=0 \\[2ex] 3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} w=y \\[2ex] x=-w \\[2ex]z=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c1d7e96203dceb7288f89ab932532351_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3c4a8b3ef3502a2bf8efd6cc398b5ae6_l3.png)
고유값 -1과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&0&-1&0\\[1.1ex] 2&0&-3&0\\[1.1ex] -2&0&3&0\\[1.1ex] 0&0&0&4\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7fbbdceca419f15672da0dcb7c15078c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2w-y = 0 \\[2ex] 2w-3y = 0\\[2ex] -2w+3y=0 \\[2ex] 4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=w=0 \\[2ex]z=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3ff9a5afa0cefa73985e7ba00c945dac_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-daee73fdcebacce8a5e5f7104ed9c213_l3.png)
고유값 3과 관련된 고유벡터를 계산합니다.
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&0&-1&0\\[1.1ex] 2&-4&-3&0\\[1.1ex] -2&0&-1&0\\[1.1ex] 0&0&0&0\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6493c6019a8b9be3254db2ffeaa19703_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2w-y = 0 \\[2ex] 2w-4x-3y = 0\\[2ex] -2w-y=0 \\[2ex] 0=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-2w \\[2ex] x=2w \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbcbd01420d80be317ecbec57010b662_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3b70eeb51bea073f058763401adf5240_l3.png)
고유값 3은 두 번 반복되므로 다중도는 2입니다. 따라서 동일한 방정식을 만족하는 또 다른 고유벡터를 찾아야 합니다.
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0 \\[1.1ex]1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5dc5fd38503b7683d8a7e3df9da9ee8d_l3.png)
따라서 행렬 A의 고유값과 고유벡터는 다음과 같습니다.
![Rendered by QuickLaTeX.com \displaystyle \lambda = 0 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1 \\[1.1ex]0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8bd7188d1d3ed1abe178d9b5f5bbc0e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2ea128d2a6e5387bd538ac3d0119b2ce_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2 \\[1.1ex]0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-22d83a8f13bdb44bf1c23f3c6b963d65_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0 \\[1.1ex]1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-65cd815fe71a1c6d8063f0f78e3422a9_l3.png)