Pada halaman ini kami menjelaskan apa itu nilai eigen dan vektor eigen, disebut juga nilai eigen dan vektor eigen. Anda juga akan menemukan contoh cara menghitungnya serta latihan langkah demi langkah untuk dipraktikkan.
Apa yang dimaksud dengan nilai eigen dan vektor eigen?
Walaupun pengertian nilai eigen dan vektor eigen sulit dipahami, namun definisinya adalah sebagai berikut:
Vektor eigen atau vektor eigen adalah vektor bukan nol pada peta linier yang bila ditransformasikan akan menimbulkan kelipatan skalar (tidak berubah arah). Skalar ini adalah nilai eigen atau nilai eigen .
![]()
Emas
![]()
adalah matriks peta linier,
![]()
adalah vektor eigen dan
![]()
nilai sendiri.
Nilai eigen juga dikenal sebagai nilai karakteristik. Dan bahkan ada ahli matematika yang menggunakan akar kata Jerman “eigen” untuk menunjuk nilai eigen dan vektor eigen: nilai eigen untuk nilai eigen dan vektor eigen untuk vektor eigen.
Bagaimana cara menghitung nilai eigen (atau nilai eigen) dan vektor eigen (atau vektor eigen) suatu matriks?
Untuk mencari nilai eigen dan vektor eigen suatu matriks, Anda harus mengikuti seluruh prosedur:
- Persamaan karakteristik matriks dihitung dengan menyelesaikan determinan berikut:
- Kami menemukan akar polinomial karakteristik yang diperoleh pada langkah 1. Akar-akar ini adalah nilai eigen dari matriks.
- Vektor eigen dari setiap nilai eigen dihitung. Untuk melakukan hal ini, sistem persamaan berikut diselesaikan untuk setiap nilai eigen:
![]()
![]()
![]()
Ini adalah cara mencari nilai eigen dan vektor eigen suatu matriks, namun berikut kami juga memberikan beberapa tipsnya: 😉
Tips : kita dapat memanfaatkan sifat-sifat nilai eigen dan vektor eigen untuk menghitungnya dengan lebih mudah:
✓ Jejak matriks (jumlah diagonal utamanya) sama dengan jumlah seluruh nilai eigen.
![]()
✓ Hasil kali semua nilai eigen sama dengan determinan matriks.
![]()
✓ Jika terdapat kombinasi linier antar baris atau kolom, paling sedikit salah satu nilai eigen matriksnya sama dengan 0.
Mari kita lihat contoh bagaimana vektor eigen dan nilai eigen suatu matriks dihitung untuk lebih memahami metode ini:
Contoh penghitungan nilai eigen dan vektor eigen suatu matriks:
- Temukan nilai eigen dan vektor eigen dari matriks berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}1&0\\[1.1ex] 5&2\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e82dbe4f6e975e1374cab2c1b74638b9_l3.png)
Pertama, kita perlu mencari persamaan karakteristik matriks tersebut. Dan untuk itu determinan berikut harus diselesaikan:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1- \lambda &0\\[1.1ex] 5&2-\lambda \end{vmatrix} = \lambda^2-3\lambda +2](https://mathority.org/wp-content/ql-cache/quicklatex.com-283812fe5eed97f58568fb6e515e3ff5_l3.png)
Sekarang kita menghitung akar-akar polinomial karakteristik, oleh karena itu, kita menyamakan hasil yang diperoleh dengan 0 dan menyelesaikan persamaan:
![]()
![Rendered by QuickLaTeX.com \lambda= \cfrac{-(-3)\pm \sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot 1} = \cfrac{+3\pm 1}{2}=\begin{cases} \lambda = 1 \\[2ex] \lambda = 2 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fdee5858b8b0187078ea372d9362900f_l3.png)
Solusi persamaan tersebut adalah nilai eigen matriks.
Setelah kita mendapatkan nilai eigen, kita menghitung vektor eigennya. Untuk melakukan ini, kita perlu menyelesaikan sistem berikut untuk setiap nilai eigen:
![]()
Pertama-tama kita akan menghitung vektor eigen yang terkait dengan nilai eigen 1:
![]()
![Rendered by QuickLaTeX.com \displaystyle (A-1 I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f0cbd7a7e0670410881dcc0bfd4969c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}0&0\\[1.1ex] 5&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e1f49b7ecec643964e4a14cd17ddecb4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 0x+0y = 0 \\[2ex] 5x+y = 0\end{array}\right\}](https://mathority.org/wp-content/ql-cache/quicklatex.com-06473aeaa487551bca2eb98ff786c8f5_l3.png)
Dari persamaan ini kita memperoleh subruang berikut:
![]()
Subruang vektor eigen juga disebut ruang eigen.
Sekarang kita harus mencari basis dari ruang bersih ini, jadi kita berikan misalnya nilai 1 pada variabelnya
![]()
dan kami memperoleh vektor eigen berikut:
![]()
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -5\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-8af03064a8f197990df832e71472cab0_l3.png)
Terakhir, setelah vektor eigen yang terkait dengan nilai eigen 1 ditemukan, kita ulangi proses menghitung vektor eigen untuk nilai eigen 2:
![]()
![Rendered by QuickLaTeX.com \displaystyle (A-2I)\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3d52ccfc2cbc996d3844af6c699a81b2_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-1&0\\[1.1ex] 5&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-24442a53901cc9f0622aecf66ef2dc25_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -x+0y = 0 \\[2ex] 5x+0y = 0\end{array}\right\} \longrightarrow \ x=0](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbd3a434bf3f89ed38a893a98befee97_l3.png)
Dalam hal ini, hanya komponen pertama dari vektor yang harus bernilai 0, sehingga kita dapat memberikan nilai apa pun
![]()
. Namun untuk lebih mudahnya lebih baik diberi angka 1:
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f47b6a21a448d003d909c0c1c969b8f6_l3.png)
Kesimpulannya, nilai eigen dan vektor eigen dari matriks tersebut adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -5 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1668ed5f36ad0a8fcb28a264c76b6163_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-56b0287c0bea71a1e5a258373aaa47d9_l3.png)
Setelah Anda mengetahui cara mencari nilai eigen dan vektor eigen suatu matriks, Anda mungkin bertanya-tanya… dan untuk apa? Ternyata mereka sangat berguna untuk diagonalisasi matriks , bahkan itu adalah aplikasi utamanya. Untuk mempelajari lebih lanjut, kami sarankan untuk memeriksa cara mendiagonalisasi matriks dengan tautan, yang prosedurnya dijelaskan langkah demi langkah dan terdapat juga contoh serta latihan yang diselesaikan untuk dipraktikkan.
Latihan soal nilai eigen dan vektor eigen (nilai eigen dan vektor eigen)
Latihan 1
Hitung nilai eigen dan vektor eigen matriks persegi orde 2 berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}3&1\\[1.1ex] 2&4\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0c6e3869ea2848140f026afc2ff8d554_l3.png)
Pertama-tama kita hitung determinan matriks dikurangi λ pada diagonal utamanya:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}3- \lambda &1\\[1.1ex] 2&4-\lambda \end{vmatrix} = \lambda^2-7\lambda +10](https://mathority.org/wp-content/ql-cache/quicklatex.com-fadce42062bb04b7477318fdc35c4285_l3.png)
Sekarang mari kita hitung akar-akar polinomial karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \lambda^2-7\lambda +10=0 \ \longrightarrow \ \begin{cases} \lambda = 2 \\[2ex] \lambda = 5 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7139127430fa6b78b78715d57a6fdf1f_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 2:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}1&1\\[1.1ex] 2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-614f9247b0d79635f70ec79eaa8c6529_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} x+y = 0 \\[2ex] 2x+2y = 0\end{array}\right\} \longrightarrow \ x=-y](https://mathority.org/wp-content/ql-cache/quicklatex.com-272495fa6e8f89ba4e7c6a6d848cb38a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-77c240aaa8b75f1e5353c295ee86ad50_l3.png)
Dan kemudian kita menghitung vektor eigen yang terkait dengan nilai eigen 5:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-2&1\\[1.1ex] 2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8aa7cae3057d78343128cd1095df24e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+y = 0 \\[2ex] 2x-y = 0\end{array}\right\} \longrightarrow \ y=2x](https://mathority.org/wp-content/ql-cache/quicklatex.com-d8c38e500cf7103b1dc0e91ea1b4531a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-8be56f81b5aef28783636f85c4dbd643_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-cde889d89562f2e42bd6610b0045c118_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3e954ba60fdc7eba60ba8530980854c5_l3.png)
Latihan 2
Tentukan nilai eigen dan vektor eigen matriks persegi 2×2 berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&1\\[1.1ex] 3&0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-54b0188c9fbadd6c3e35315443b71efd_l3.png)
Kita hitung terlebih dahulu determinan matriks dikurangi λ pada diagonal utamanya untuk memperoleh persamaan karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2- \lambda &1\\[1.1ex] 3&-\lambda \end{vmatrix} = \lambda^2-2\lambda -3](https://mathority.org/wp-content/ql-cache/quicklatex.com-88fcd3b21ad2fa5a4d1d7789a86043e5_l3.png)
Sekarang mari kita hitung akar-akar polinomial karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \lambda^2-2\lambda -3=0 \ \longrightarrow \ \begin{cases} \lambda = -1 \\[2ex] \lambda = 3 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2614817b28bdb25c4fd89d4c773b4e35_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen -1:
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 3&1\\[1.1ex] 3&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e4b3d926f1a25454c3e645d79b28887d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 3x+1y = 0 \\[2ex] 3x+1y = 0\end{array}\right\} \longrightarrow \ y=-3x](https://mathority.org/wp-content/ql-cache/quicklatex.com-a7a6529e3ed8eb1607caa88475bcbb8f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-67716508d5a9772f98c3f006f012dff1_l3.png)
Dan kemudian kita menghitung vektor eigen yang terkait dengan nilai eigen 3:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix}-1&1\\[1.1ex] 3&-3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \end{pmatrix} =}\begin{pmatrix}0 \\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-20e5d0be7e6dbe91bf15c835dac63b38_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -1x+1y = 0 \\[2ex] 3x-3y = 0\end{array}\right\} \longrightarrow \ y=x](https://mathority.org/wp-content/ql-cache/quicklatex.com-8355b1ade79ba1508633f309926bc221_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f3cac5769795f1730fcbf118fdfbbc3_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}1 \\[1.1ex] -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-95e2b0bf0405bc0c301600cbb4b2b28a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6322d97c5d24c1227b06dddf4b0974c0_l3.png)
Latihan 3
Tentukan nilai eigen dan vektor eigen matriks orde 3 berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}1&2&0\\[1.1ex] 2&1&0\\[1.1ex] 0&1&2\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a0e4f4147cbc9e0b657ff432f64bc8e2_l3.png)
Pertama-tama kita harus menyelesaikan determinan matriks A dikurangi matriks identitas dikalikan lambda untuk memperoleh persamaan karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0af2ff4694103925883916b6a974c84d_l3.png)
Dalam hal ini, kolom terakhir determinan memiliki dua angka nol, jadi kita akan memanfaatkan kolom ini untuk menghitung determinan berdasarkan kofaktor (atau komplemen) melalui kolom ini:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&2&0\\[1.1ex] 2&1-\lambda&0\\[1.1ex] 0&1&2-\lambda\end{vmatrix}& = (2-\lambda)\cdot \begin{vmatrix}1-\lambda&2\\[1.1ex] 2&1-\lambda \end{vmatrix} \\[3ex] & = (2-\lambda)[\lambda^2 -2\lambda -3] \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ec7e7a2ec96b8d0721392c28838d105e_l3.png)
Sekarang kita perlu menghitung akar-akar polinomial karakteristik. Sebaiknya jangan mengalikan tanda kurung karena dengan begitu kita akan memperoleh polinomial derajat ketiga, sebaliknya jika kedua faktor diselesaikan secara terpisah akan lebih mudah untuk mendapatkan nilai eigennya:
![Rendered by QuickLaTeX.com \displaystyle (2-\lambda)[\lambda^2 -2\lambda -3]=0 \ \longrightarrow \ \begin{cases} 2-\lambda=0 \ \longrightarrow \ \lambda = 2 \\[2ex] \lambda^2 -2\lambda -3=0 \ \longrightarrow \begin{cases}\lambda = -1 \\[2ex] \lambda = 3 \end{cases} \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-adbfb1815d4a480c0584dfee1d8039fb_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 2:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -1&2&0\\[1.1ex] 2&-1&0\\[1.1ex] 0&1&0\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a6a12c460df4d2f44709c4fd595193dc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -x+2y = 0 \\[2ex] 2x-y = 0\\[2ex] y=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=0 \\[2ex] x=y=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5c24e4b7b060a826203e3a049ddfc191_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-75ebf6f61121b67afd80cdcec30a1709_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen -1:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&2&0\\[1.1ex] 2&2&0\\[1.1ex] 0&1&3\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d23c4438a53032df27cc5334d4437c18_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2x+2y = 0 \\[2ex] 2x+2y = 0\\[2ex] y+3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-3z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e023d57d34510e5e8f3a37c20d170e72_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0be9ef18fb17845818bdd9de51dcb114_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 3:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&2&0\\[1.1ex] 2&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d0360154b87545dd87e1b0b7bc06f4e7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+2y = 0 \\[2ex] 2x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=y \\[2ex] y=z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8d514791286e43eae4b09d893d528df_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-99f86f65a5a9c69119285377d88f2efa_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fe42249314c1698847242c608bd65843_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}3 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d412e1f81df9d6425db73113aaae5cd8_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1\\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f581aa37c9698dfb32062777a5a75b11_l3.png)
Latihan 4
Hitung nilai eigen dan vektor eigen matriks persegi 3×3 berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1323184f42d56f070e5b46a75a2e5c4d_l3.png)
Pertama-tama kita selesaikan determinan matriks dikurangi λ pada diagonal utamanya untuk mendapatkan persamaan karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&1&3\\[1.1ex]-1&1-\lambda&1\\[1.1ex] 1&2&4-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-10\lambda](https://mathority.org/wp-content/ql-cache/quicklatex.com-bc48c8489b25004ef131cc6ced36b929_l3.png)
Kami mengekstrak faktor persekutuan dari polinomial karakteristik dan menyelesaikan λ dari setiap persamaan:
![Rendered by QuickLaTeX.com \displaystyle \lambda(-\lambda^2+7\lambda-10)=0 \ \longrightarrow \ \begin{cases} \lambda=0\\[2ex] -\lambda^2+7\lambda-10=0 \ \longrightarrow \begin{cases}\lambda = 2 \\[2ex] \lambda = 5 \end{cases} \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-411dab2f65b426c37f8427d81ef13e97_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 0:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&1&3\\[1.1ex]-1&1&1\\[1.1ex] 1&2&4\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bd7ebe2424c6524d522d5bba16d72d33_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2x+y+3z= 0 \\[2ex] -x+y+z= 0\\[2ex] x+2y+4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-\cfrac{2z}{3} \\[4ex] y=-\cfrac{5z}{3} \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-12cd10d2dc8afdb7a045beae4946b64d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}-2 \\[1.1ex] -5\\[1.1ex] 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a34877b285f281c83d7e73fa8eb40b9f_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 2:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 0&1&3\\[1.1ex]-1&-1&1\\[1.1ex] 1&2&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbcc697a3be877838fae3507dd3c1b68_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} y+3z = 0 \\[2ex] -x-y+z= 0\\[2ex] x+2y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-3z \\[2ex] x=4z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bb8d470bc7bff9f5d8d5a0245b1e7cbf_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}4\\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-30e589c5ae6b940b901454c296d8342b_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 5:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -3&1&3\\[1.1ex]-1&-4&1\\[1.1ex] 1&2&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aaf6f17dedf5eecd1e035b9da59da2c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -3x+y+3z = 0 \\[2ex] -x-4y+z = 0\\[2ex] x+2y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=z \\[2ex] y=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-dca8569528fb4923639dd535e25a0f74_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-308b2f0f597fcc084d8d06d6c45fd3e5_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 0 \qquad v = \begin{pmatrix}-2 \\[1.1ex] -5 \\[1.1ex] 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d8a98f007b72910fcd79622eda19e7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}4 \\[1.1ex] -3 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ee67e876a46b09430d2d73a653f2d743_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 5 \qquad v = \begin{pmatrix}1\\[1.1ex] 0 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-99e4e8b0b837c26991777a294f30d49a_l3.png)
Latihan 5
Hitung nilai eigen dan vektor eigen matriks 3×3 berikut:
![Rendered by QuickLaTeX.com \displaystyle A= \begin{pmatrix}2&2&2\\[1.1ex] 1&2&0\\[1.1ex] 0&1&3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a39253beac54a05e9e84d431daf43362_l3.png)
Pertama-tama kita selesaikan determinan matriks dikurangi λ pada diagonal utamanya untuk mendapatkan persamaan karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}2-\lambda&2&2\\[1.1ex] 1&2-\lambda&0\\[1.1ex] 0&1&3-\lambda\end{vmatrix}=-\lambda^3+7\lambda^2-14\lambda+8](https://mathority.org/wp-content/ql-cache/quicklatex.com-9392bbf957bee6c445c64192ae96a2ce_l3.png)
Kita mencari akar polinomial karakteristik atau polinomial minimum menggunakan aturan Ruffini:
![Rendered by QuickLaTeX.com \displaystyle \begin{array}{r|rrrr} & -1&7&-14&8 \\[2ex] 1 & & -1&6&-8 \\ \hline &-1\vphantom{\Bigl)}&6&-8&0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-152ec29207fec8bdac7dabe9e1fbff31_l3.png)
Dan kemudian kita menemukan akar polinomial yang diperoleh:
![Rendered by QuickLaTeX.com \displaystyle -\lambda^2+6\lambda -8=0 \ \longrightarrow \ \begin{cases} \lambda =2 \\[2ex] \lambda = 4 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b92304d107c097ec5712527929011440_l3.png)
Jadi nilai eigen matriksnya adalah:
![]()
Kami menghitung vektor eigen yang terkait dengan nilai eigen 1:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1&2&2\\[1.1ex] 1&1&0\\[1.1ex] 0&1&2\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-981cc7881e44436326a35a7cc36ad26a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} x+2y+2z= 0 \\[2ex] x+y= 0\\[2ex] y+2z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=-y \\[2ex] y=-2z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d928870722dec65e8b48f7175d5dd4ba_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}2 \\[1.1ex] -2\\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da5ca9263773369d5824688b71a31644_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 2:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 0&2&2\\[1.1ex] 1&0&0\\[1.1ex] 0&1&1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b9d1686e2947a9bbe1dc10b373128e1e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2y+2z = 0 \\[2ex] x= 0\\[2ex] y+z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-z \\[2ex] x=0\end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6000063fd1cc954e119cd5d73d08c405_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0\\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d47216be7fc08447ac3022a105a086b1_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 4:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&2&2\\[1.1ex] 1&-2&0\\[1.1ex] 0&1&-1\end{pmatrix}\begin{pmatrix}x \\[1.1ex] y \\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-15e38e9899a9e8bb47cfbf10a4f05075_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2x+2y+2z = 0 \\[2ex] x-2y = 0\\[2ex] y-z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} x=2y \\[2ex] y=z \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-004d61132ba8eeee123d8614432cbce2_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5871bb6e88776aab87e0239540d43677_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 1 \qquad v = \begin{pmatrix}2\\[1.1ex] -2 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f1ea8e2eff0c179b9872da8f6fab2d4e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 2 \qquad v = \begin{pmatrix}0 \\[1.1ex] -1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-edc6fd09f9c6a12b26518a9103cc6610_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 4 \qquad v = \begin{pmatrix}2 \\[1.1ex] 1 \\[1.1ex] 1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b492e98d771e76e77dc68d2fe2ea92c4_l3.png)
Latihan 6
Tentukan nilai eigen dan vektor eigen dari matriks 4×4 berikut:
![Rendered by QuickLaTeX.com \displaystyle A=\begin{pmatrix}1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5cb04190d6f536d33b22265317441144_l3.png)
Pertama-tama kita harus menyelesaikan determinan matriks dikurangi λ pada diagonal utamanya untuk mendapatkan persamaan karakteristik:
![Rendered by QuickLaTeX.com \displaystyle \text{det}(A-\lambda I)= \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-35cae2dd143d77e22a522b49e8d43f3d_l3.png)
Dalam hal ini, kolom terakhir determinan hanya berisi nol kecuali satu elemen, oleh karena itu kita akan memanfaatkan kolom ini untuk menghitung determinan berdasarkan kofaktor melalui kolom ini:
![Rendered by QuickLaTeX.com \displaystyle \begin{aligned} \begin{vmatrix}1-\lambda&0&-1&0\\[1.1ex] 2&-1-\lambda&-3&0\\[1.1ex] -2&0&2-\lambda&0\\[1.1ex] 0&0&0&3-\lambda\end{vmatrix}& = (3-\lambda)\cdot \begin{vmatrix}1-\lambda&0&-1\\[1.1ex] 2&-1-\lambda&-3\\[1.1ex] -2&0&2-\lambda\end{vmatrix} \\[3ex] & = (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda] \end{aligned}](https://mathority.org/wp-content/ql-cache/quicklatex.com-456b0612b308c03fd1643a5ba0f332e5_l3.png)
Sekarang kita harus menghitung akar-akar polinomial karakteristik. Sebaiknya jangan mengalikan tanda kurung karena dengan begitu kita akan memperoleh polinomial derajat keempat, sebaliknya jika kedua faktor diselesaikan secara terpisah akan lebih mudah untuk menghitung nilai eigennya:
![Rendered by QuickLaTeX.com \displaystyle (3-\lambda)[-\lambda^3 +2\lambda^2 +3\lambda]=0 \ \longrightarrow \ \begin{cases} 3-\lambda=0 \ \longrightarrow \ \lambda = 3 \\[2ex] -\lambda^3 +2\lambda^2 +3\lambda =0 \ \longrightarrow \ \lambda(-\lambda^2 +2\lambda +3) =0 \end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ef6e59f8631cac087c988004aa512b62_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda(-\lambda^2 +2\lambda +3)=0 \ \longrightarrow \ \begin{cases} \lambda=0 \\[2ex] -\lambda^2 +2\lambda +3=0 \ \longrightarrow \ \begin{cases} \lambda=-1 \\[2ex] \lambda = 3 \end{cases}\end{cases}](https://mathority.org/wp-content/ql-cache/quicklatex.com-786b2892e7045f117498697407d35552_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 0:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1&0&-1&0\\[1.1ex] 2&-1&-3&0\\[1.1ex] -2&0&2&0\\[1.1ex] 0&0&0&3\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f43f22947b29779ef456e4ac7a5d66a0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} w-y = 0 \\[2ex] 2w-x-3y = 0\\[2ex] -2w+2y=0 \\[2ex] 3z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} w=y \\[2ex] x=-w \\[2ex]z=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c1d7e96203dceb7288f89ab932532351_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3c4a8b3ef3502a2bf8efd6cc398b5ae6_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen -1:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2&0&-1&0\\[1.1ex] 2&0&-3&0\\[1.1ex] -2&0&3&0\\[1.1ex] 0&0&0&4\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7fbbdceca419f15672da0dcb7c15078c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} 2w-y = 0 \\[2ex] 2w-3y = 0\\[2ex] -2w+3y=0 \\[2ex] 4z=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=w=0 \\[2ex]z=0 \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3ff9a5afa0cefa73985e7ba00c945dac_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-daee73fdcebacce8a5e5f7104ed9c213_l3.png)
Kami menghitung vektor eigen yang terkait dengan nilai eigen 3:
![]()
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2&0&-1&0\\[1.1ex] 2&-4&-3&0\\[1.1ex] -2&0&-1&0\\[1.1ex] 0&0&0&0\end{pmatrix}\begin{pmatrix}w \\[1.1ex] x \\[1.1ex] y\\[1.1ex] z \end{pmatrix} =\begin{pmatrix}0 \\[1.1ex] 0\\[1.1ex] 0 \\[1.1ex] 0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6493c6019a8b9be3254db2ffeaa19703_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \left.\begin{array}{l} -2w-y = 0 \\[2ex] 2w-4x-3y = 0\\[2ex] -2w-y=0 \\[2ex] 0=0 \end{array}\right\} \longrightarrow \ \begin{array}{l} y=-2w \\[2ex] x=2w \end{array}](https://mathority.org/wp-content/ql-cache/quicklatex.com-fbcbd01420d80be317ecbec57010b662_l3.png)
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3b70eeb51bea073f058763401adf5240_l3.png)
Nilai eigen 3 mempunyai multiplisitas sama dengan 2, karena diulang dua kali. Oleh karena itu kita harus mencari vektor eigen lain yang memenuhi persamaan yang sama:
![Rendered by QuickLaTeX.com \displaystyle v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0 \\[1.1ex]1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5dc5fd38503b7683d8a7e3df9da9ee8d_l3.png)
Oleh karena itu, nilai eigen dan vektor eigen matriks A adalah:
![Rendered by QuickLaTeX.com \displaystyle \lambda = 0 \qquad v = \begin{pmatrix}1 \\[1.1ex] -1 \\[1.1ex] 1 \\[1.1ex]0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8bd7188d1d3ed1abe178d9b5f5bbc0e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = -1 \qquad v = \begin{pmatrix}0 \\[1.1ex] 1 \\[1.1ex] 0 \\[1.1ex]0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2ea128d2a6e5387bd538ac3d0119b2ce_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}1 \\[1.1ex] 2 \\[1.1ex] -2 \\[1.1ex]0\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-22d83a8f13bdb44bf1c23f3c6b963d65_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \lambda = 3 \qquad v = \begin{pmatrix}0 \\[1.1ex] 0 \\[1.1ex] 0 \\[1.1ex]1\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-65cd815fe71a1c6d8063f0f78e3422a9_l3.png)