Persamaan matriks

Di halaman ini Anda akan mempelajari apa itu persamaan matriks dan cara menyelesaikannya. Selain itu, Anda akan menemukan contoh dan latihan persamaan dengan matriks yang diselesaikan.

Apa persamaan matriks?

Persamaan matriks sama seperti persamaan biasa, namun tidak terdiri dari bilangan, melainkan terdiri dari matriks. Misalnya:

\displaystyle  AX=B

Oleh karena itu, solusi X juga akan menjadi matriks.

Seperti yang telah Anda ketahui, matriks tidak dapat dipecah. Oleh karena itu, matriks X tidak dapat diselesaikan dengan membagi matriks yang mengalikannya dengan sisi lain persamaan:

\renewcommand{\CancelColor}{\color{red}}  \xcancel{X =\cfrac{B}{A}}

Sebaliknya, untuk menghapus matriks X, seluruh prosedur harus diikuti. Jadi mari kita lihat cara menyelesaikan persamaan matriks dengan latihan yang terselesaikan:

Cara menyelesaikan persamaan matriks. Contoh:

  • Selesaikan persamaan matriks berikut:

\displaystyle  AX+B = C

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}

Hal pertama yang perlu kita lakukan adalah menyelesaikan matriks X. Jadi, kita kurangi matriks B dari sisi persamaan yang lain:

\displaystyle  AX+B = C

\displaystyle  AX = C-B

Untuk menyelesaikan kliring matriks tidak dapat dibagi. Namun kita harus melakukan hal berikut:

Kita harus mengalikan kedua ruas persamaan dengan invers matriks yang mengalikan matriks X dan, sebagai tambahan, mengalikan kedua ruas tersebut dengan sisi letak matriks tersebut.

Dalam hal ini, matriks yang mengalikan X adalah A dan terletak di sebelah kirinya. Oleh karena itu, kita mengalikan kedua ruas kiri persamaan dengan invers dari A (A -1 ):

\displaystyle  AX = C-B

\displaystyle  \definecolor{vermell}{HTML}{F44336} \color{vermell}\bm{A^{-1}} \color{black} \cdot AX =  \color{vermell}\bm{A^{-1}} \color{black}  \cdot (C-B)

Suatu matriks dikalikan dengan inversnya sama dengan matriks identitas. Belum

\bm{A^{-1} \cdot A = I }:

\displaystyle  IX = A^{-1} \cdot (C-B)

Setiap matriks dikalikan dengan matriks identitas menghasilkan matriks yang sama. Belum:

\displaystyle  X = A^{-1} \cdot (C-B)

Dan dengan cara ini kita telah menghapus X. Sekarang tinggal lakukan operasi matriksnya. Jadi kita hitung dulu matriks invers 2 × 2 dari A:

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

Kami menghitung adjoint dari matriks A:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}

Dan setelah matriks adjoin ditemukan, kita lanjutkan menghitung matriks yang ditransposisikan untuk menentukan matriks inversnya:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}

Sekarang kita substitusikan semua matriks ke dalam ekspresi untuk menghitung X:

\displaystyle  X = A^{-1} \cdot (C-B)

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)

Dan kami melanjutkan untuk menyelesaikan operasi dengan matriks. Pertama-tama kita menghitung tanda kurung dengan mengurangkan matriksnya:

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}

Dan terakhir, kita mengalikan matriksnya:

\displaystyle  X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}

\displaystyle  X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}

\displaystyle  \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}

Menyelesaikan Masalah Persamaan Matriks

Agar Anda dapat berlatih dan memahami konsepnya dengan baik, di bawah ini kami tinggalkan beberapa persamaan matriks yang terselesaikan. Anda dapat mencoba melakukan latihan dan melihat apakah Anda berhasil dengan solusinya. Jangan lupa Anda juga dapat menanyakan pertanyaan apa pun yang muncul kepada kami di kolom komentar.

Latihan 1

Menjadi

\displaystyle A

Dan

\displaystyle B

matriks persegi berdimensi 2×2 berikut:

\displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Hitung matriksnya

X

yang memenuhi persamaan matriks berikut:

\displaystyle AX=B

Anda harus mengosongkan matriks terlebih dahulu

X

persamaan matriks:

\displaystyle AX=B

\displaystyle A^{-1} \cdot AX=A^{-1} \cdot B

\displaystyle IX=A^{-1} \cdot B

\displaystyle X=A^{-1} \cdot B

Setelah kita memiliki matriksnya

X

jelas, operasikan saja dengan matriks. Oleh karena itu, pertama-tama kita menghitung matriks invers dari A:

\displaystyle  A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}

Sekarang kita substitusikan semua matriks ke dalam persamaan untuk menghitung matriks

X :

\displaystyle X=A^{-1} \cdot B

\displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Dan terakhir, kita melakukan perkalian matriks:

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}

Latihan 2

Menjadi

\displaystyle A

,

\displaystyle B

Dan

\displaystyle C

matriks orde 2 berikut:

\displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}

Hitung matriksnya

X

yang memenuhi persamaan matriks berikut:

\displaystyle A+ XB=C

Hal pertama yang perlu kita lakukan adalah mengosongkan matriks.

X

persamaan matriks:

\displaystyle A+ XB=C

\displaystyle  XB=C-A

\displaystyle XB \cdot B^{-1}=\left(C-A\right)\cdot B^{-1}

\displaystyle XI=\left(C-A\right)\cdot B^{-1}

\displaystyle X = \left(C-A\right)\cdot B^{-1}

Setelah kita mengisolasi matriks

X

, perlu untuk beroperasi dengan matriks. Oleh karena itu, pertama-tama kita menghitung matriks invers dari B:

\displaystyle  B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Sekarang kita substitusikan semua matriks ke dalam persamaan untuk menghitung matriks

X :

\displaystyle X=\left(C-A\right)\cdot B^{-1}

\displaystyle  X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Kita menyelesaikan tanda kurung dengan mengurangkan matriks:

\displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Dan terakhir, kita mengalikan matriksnya:

\displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}

Latihan 3

Menjadi

\displaystyle A

,

\displaystyle B

Dan

\displaystyle C

matriks orde kedua berikut:

\displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}

temukan matriksnya

X

yang memenuhi persamaan matriks berikut:

\displaystyle AXB=C

Pertama kita perlu menghapus matriks

X

persamaan matriks:

\displaystyle AXB=C

\displaystyle A^{-1}\cdot AXB\cdot B^{-1}=A^{-1}\cdot C\cdot B^{-1}

\displastyle IXI=A^{-1}\cdot C\cdot B^{-1}

\displastyle X=A^{-1}\cdot C\cdot B^{-1}

Setelah kita mengosongkan matriks

X

, perlu untuk beroperasi dengan matriks. Oleh karena itu, pertama-tama kita menghitung matriks invers dari A:

\displaystyle  A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}

Dan kami juga membalikkan matriks B:

\displaystyle  B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Sekarang kita substitusikan semua matriks ke dalam ekspresi untuk menghitung matriks

X :

\displaystyle X=A^{-1}\cdot C\cdot B^{-1}

\displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Pertama-tama kita selesaikan perkalian di sebelah kiri

\displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

\displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Dan terakhir, kita lakukan perkalian sisanya:

\displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}

Latihan 4

Menjadi

\displaystyle A

Dan

\displaystyle B

matriks berdimensi 3×3 berikut:

\displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}

Hitung matriksnya

X

yang memenuhi persamaan matriks berikut:

\displaystyle B^{t}- AX=B

Pertama kita menghapus matriksnya

X

persamaan matriks:

\displaystyle B^t- AX=B

\displaystyle B^t- B=AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=A^{-1}\cdot AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=IX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=X

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

Setelah kita mengisolasi matriks

X

, perlu untuk beroperasi dengan matriks. Oleh karena itu, pertama-tama kita menghitung matriks invers dari A:

\displaystyle  A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\  1 & 2 \end{vmatrix} & \begin{vmatrix}  0 & -1  \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix}  0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1  & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2  \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\  -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1  & 1\\ 0 & 0  \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1  & 0 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1  & -2 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}

Sekarang kita substitusikan semua matriks ke dalam ekspresi untuk menghitung X:

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

Kami mengubah urutan matriks B:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

Kita menyelesaikan tanda kurung dengan mengurangkan matriks:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}

Dan terakhir, kita melakukan perkalian matriks:

\displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3}  & \bm{-6} & \bm{9} \end{pmatrix}

Tinggalkan Komentar

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Scroll to Top