Matrixgleichungen

Auf dieser Seite erfahren Sie, was Matrixgleichungen sind und wie Sie sie lösen. Darüber hinaus finden Sie Beispiele und gelöste Aufgaben zu Gleichungen mit Matrizen.

Was sind Matrixgleichungen?

Matrixgleichungen sind wie normale Gleichungen, bestehen jedoch nicht aus Zahlen, sondern aus Matrizen. Zum Beispiel:

\displaystyle  AX=B

Daher wird Lösung X auch eine Matrix sein.

Wie Sie bereits wissen, können Matrizen nicht geteilt werden. Daher kann die Matrix X nicht durch Division der Matrix, die sie multipliziert hat, auf der anderen Seite der Gleichung gelöscht werden:

\renewcommand{\CancelColor}{\color{red}}  \xcancel{X =\cfrac{B}{A}}

Im Gegenteil, um die X-Matrix zu löschen, muss ein ganzes Verfahren befolgt werden. Sehen wir uns also an, wie man Matrixgleichungen mit einer gelösten Übung löst:

So lösen Sie Matrixgleichungen. Beispiel:

  • Lösen Sie die folgende Matrixgleichung:

\displaystyle  AX+B = C

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}

Als Erstes müssen wir nach Matrix X auflösen . Also subtrahieren wir Matrix B von der anderen Seite der Gleichung:

\displaystyle  AX+B = C

\displaystyle  AX = C-B

Zum Abschluss kann die Clearing-Matrix nicht geteilt werden. Aber wir müssen Folgendes tun:

Wir müssen beide Seiten der Gleichung mit der Umkehrung der Matrix multiplizieren, die die Matrix X multipliziert, und außerdem beide Seiten mit der Seite multiplizieren, auf der sich diese Matrix befindet.

In diesem Fall ist die Matrix, die X multipliziert, A und befindet sich links davon. Wir multiplizieren daher links beide Seiten der Gleichung mit der Umkehrung von A (A -1 ):

\displaystyle  AX = C-B

\displaystyle  \definecolor{vermell}{HTML}{F44336} \color{vermell}\bm{A^{-1}} \color{black} \cdot AX =  \color{vermell}\bm{A^{-1}} \color{black}  \cdot (C-B)

Eine mit ihrer Umkehrung multiplizierte Matrix ist gleich der Identitätsmatrix. Noch

\bm{A^{-1} \cdot A = I }:

\displaystyle  IX = A^{-1} \cdot (C-B)

Jede mit der Identitätsmatrix multiplizierte Matrix ergibt dieselbe Matrix. Noch:

\displaystyle  X = A^{-1} \cdot (C-B)

Und auf diese Weise haben wir X bereits gelöscht. Führen Sie nun nur noch die Matrixoperationen durch. Also berechnen wir zunächst die 2 × 2-Umkehrmatrix von A:

\displaystyle  A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

Wir berechnen den Adjungierten der Matrix A:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}

Und sobald die adjungierte Matrix gefunden ist, fahren wir mit der Berechnung der transponierten Matrix fort, um die inverse Matrix zu bestimmen:

\displaystyle  A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}

Jetzt setzen wir alle Matrizen in den Ausdruck ein, um X zu berechnen:

\displaystyle  X = A^{-1} \cdot (C-B)

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)

Und wir fahren damit fort, die Operationen mit Matrizen zu lösen. Wir berechnen zunächst die Klammern, indem wir die Matrizen subtrahieren:

\displaystyle  X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}

Und schließlich multiplizieren wir die Matrizen:

\displaystyle  X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}

\displaystyle  X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}

\displaystyle  \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}

Probleme mit Matrixgleichungen gelöst

Damit Sie das Konzept üben und somit gut verstehen können, hinterlassen wir Ihnen im Folgenden einige gelöste Matrixgleichungen. Sie können die Übungen ausprobieren und sehen, ob Ihnen die Lösungen gelungen sind. Vergessen Sie nicht, dass Sie uns auch alle Fragen stellen können, die in den Kommentaren auftauchen.

Übung 1

Sei

\displaystyle A

Und

\displaystyle B

die folgenden quadratischen Matrizen der Dimension 2×2:

\displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Berechnen Sie die Matrix

X

welches die folgende Matrixgleichung erfüllt:

\displaystyle AX=B

Sie müssen zuerst die Matrix leeren

X

der Matrixgleichung:

\displaystyle AX=B

\displaystyle A^{-1} \cdot AX=A^{-1} \cdot B

\displaystyle IX=A^{-1} \cdot B

\displaystyle X=A^{-1} \cdot B

Sobald wir die Matrix haben

X

Klar, operiere einfach mit den Matrizen. Wir berechnen daher zunächst die inverse Matrix von A:

\displaystyle  A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}

Jetzt ersetzen wir alle Matrizen in der Gleichung, um die Matrix zu berechnen

X :

\displaystyle X=A^{-1} \cdot B

\displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}

Und schließlich führen wir die Multiplikation der Matrizen durch:

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}

Übung 2

Sei

\displaystyle A

,

\displaystyle B

Und

\displaystyle C

die folgende Reihenfolge 2 Matrizen:

\displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}

Berechnen Sie die Matrix

X

welches die folgende Matrixgleichung erfüllt:

\displaystyle A+ XB=C

Als erstes müssen wir die Matrix leeren.

X

der Matrixgleichung:

\displaystyle A+ XB=C

\displaystyle  XB=C-A

\displaystyle XB \cdot B^{-1}=\left(C-A\right)\cdot B^{-1}

\displaystyle XI=\left(C-A\right)\cdot B^{-1}

\displaystyle X = \left(C-A\right)\cdot B^{-1}

Sobald wir die Matrix isoliert haben

X

, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von B:

\displaystyle  B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Jetzt ersetzen wir alle Matrizen in der Gleichung, um die Matrix zu berechnen

X :

\displaystyle X=\left(C-A\right)\cdot B^{-1}

\displaystyle  X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Wir lösen die Klammern durch Subtrahieren der Matrizen:

\displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}

Und schließlich multiplizieren wir die Matrizen:

\displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}

Übung 3

Sei

\displaystyle A

,

\displaystyle B

Und

\displaystyle C

die folgenden Matrizen zweiter Ordnung:

\displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}

Finden Sie die Matrix

X

welches die folgende Matrixgleichung erfüllt:

\displaystyle AXB=C

Zuerst müssen wir die Matrix löschen

X

der Matrixgleichung:

\displaystyle AXB=C

\displaystyle A^{-1}\cdot AXB\cdot B^{-1}=A^{-1}\cdot C\cdot B^{-1}

\displastyle IXI=A^{-1}\cdot C\cdot B^{-1}

\displastyle X=A^{-1}\cdot C\cdot B^{-1}

Sobald wir die Matrix geleert haben

X

, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von A:

\displaystyle  A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}

Und wir invertieren auch Matrix B:

\displaystyle  B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}

\displaystyle B^{-1} = \cfrac{1}{\vert B \vert } \cdot \Bigl( \text{Adj}(B)\Bigr)^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}

\displaystyle  B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}

\displaystyle  B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Jetzt setzen wir alle Matrizen in den Ausdruck ein, um die Matrix zu berechnen

X :

\displaystyle X=A^{-1}\cdot C\cdot B^{-1}

\displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Wir lösen zunächst die Multiplikation auf der linken Seite

\displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

\displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}

Und schließlich führen wir die verbleibende Multiplikation durch:

\displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}

\displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}

Übung 4

Sei

\displaystyle A

Und

\displaystyle B

die folgenden Matrizen der Dimension 3×3:

\displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}

Berechnen Sie die Matrix

X

welches die folgende Matrixgleichung erfüllt:

\displaystyle B^{t}- AX=B

Zuerst löschen wir die Matrix

X

der Matrixgleichung:

\displaystyle B^t- AX=B

\displaystyle B^t- B=AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=A^{-1}\cdot AX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=IX

\displaystyle A^{-1}\cdot \left(B^t- B \right)=X

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

Sobald wir die Matrix isoliert haben

X

, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von A:

\displaystyle  A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}

\displaystyle A^{-1} = \cfrac{1}{\vert A \vert } \cdot \Bigl( \text{Adj}(A)\Bigr)^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\  1 & 2 \end{vmatrix} & \begin{vmatrix}  0 & -1  \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix}  0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1  & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2  \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\  -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1  & 1\\ 0 & 0  \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1  & 0 & -1 \end{pmatrix}^{\bm{t}}

\displaystyle  A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1  & -2 & -1 \end{pmatrix}

\displaystyle  A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}

Jetzt setzen wir alle Matrizen in den Ausdruck ein, um X zu berechnen:

\displaystyle X=A^{-1}\cdot \left(B^t- B \right)

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

Wir transponieren Matrix B:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)

Wir lösen die Klammern durch Subtrahieren von Matrizen:

\displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1  & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}

Und schließlich führen wir die Matrixmultiplikation durch:

\displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3}  & \bm{-6} & \bm{9} \end{pmatrix}

Kommentar verfassen

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Nach oben scrollen