Auf dieser Seite erfahren Sie, was Matrixgleichungen sind und wie Sie sie lösen. Darüber hinaus finden Sie Beispiele und gelöste Aufgaben zu Gleichungen mit Matrizen.
Was sind Matrixgleichungen?
Matrixgleichungen sind wie normale Gleichungen, bestehen jedoch nicht aus Zahlen, sondern aus Matrizen. Zum Beispiel:
![]()
Daher wird Lösung X auch eine Matrix sein.
Wie Sie bereits wissen, können Matrizen nicht geteilt werden. Daher kann die Matrix X nicht durch Division der Matrix, die sie multipliziert hat, auf der anderen Seite der Gleichung gelöscht werden:
![]()
Im Gegenteil, um die X-Matrix zu löschen, muss ein ganzes Verfahren befolgt werden. Sehen wir uns also an, wie man Matrixgleichungen mit einer gelösten Übung löst:
So lösen Sie Matrixgleichungen. Beispiel:
- Lösen Sie die folgende Matrixgleichung:
![]()
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\[1.1ex] 0 & 5 \end{pmatrix} \qquad C =\begin{pmatrix} 2 & 1 \\[1.1ex] 6 & -3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9727c78818a9661573310f22ec2fb3cf_l3.png)
Als Erstes müssen wir nach Matrix X auflösen . Also subtrahieren wir Matrix B von der anderen Seite der Gleichung:
![]()
![]()
Zum Abschluss kann die Clearing-Matrix nicht geteilt werden. Aber wir müssen Folgendes tun:
Wir müssen beide Seiten der Gleichung mit der Umkehrung der Matrix multiplizieren, die die Matrix X multipliziert, und außerdem beide Seiten mit der Seite multiplizieren, auf der sich diese Matrix befindet.
In diesem Fall ist die Matrix, die X multipliziert, A und befindet sich links davon. Wir multiplizieren daher links beide Seiten der Gleichung mit der Umkehrung von A (A -1 ):
![]()
![]()
Eine mit ihrer Umkehrung multiplizierte Matrix ist gleich der Identitätsmatrix. Noch
![]()
![]()
Jede mit der Identitätsmatrix multiplizierte Matrix ergibt dieselbe Matrix. Noch:
![]()
Und auf diese Weise haben wir X bereits gelöscht. Führen Sie nun nur noch die Matrixoperationen durch. Also berechnen wir zunächst die 2 × 2-Umkehrmatrix von A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}2 & 1 \\[1.1ex] 4 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b79c0ae6349ac5ac0267e179e641b66e_l3.png)
![]()
Wir berechnen den Adjungierten der Matrix A:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -4 \\[1.1ex] -1 & 2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1eb7c7a828453c5310d59386f0303b83_l3.png)
Und sobald die adjungierte Matrix gefunden ist, fahren wir mit der Berechnung der transponierten Matrix fort, um die inverse Matrix zu bestimmen:
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix}3 & -1 \\[1.1ex] -4 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-aa12c355319a6894e76343c9cb9185d3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a2fd06e0ad4a2a18560f644b718dadf4_l3.png)
Jetzt setzen wir alle Matrizen in den Ausdruck ein, um X zu berechnen:
![]()
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix} \cdot \left(\begin{pmatrix} \vphantom{\frac{3}{2}} 2 & 1 \\[1.3ex] 6 & -3\end{pmatrix}-\begin{pmatrix} \vphantom{\frac{3}{2}}3 & -1 \\[1.3ex] 0 & 5 \end{pmatrix}\right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-99716e9accb7ee578fb1119d4e800e4f_l3.png)
Und wir fahren damit fort, die Operationen mit Matrizen zu lösen. Wir berechnen zunächst die Klammern, indem wir die Matrizen subtrahieren:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\[1.3ex] -2 & 1\end{pmatrix}\begin{pmatrix} -1 & 2 \\[1.1ex] 6 & -8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d07c28ad6104e391605836ecdd297251_l3.png)
Und schließlich multiplizieren wir die Matrizen:
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} \frac{3}{2}\cdot (-1) + \left(-\frac{1}{2} \right) \cdot 6 & \frac{3}{2}\cdot 2 + \left(-\frac{1}{2} \right)\cdot (-8) \\[1.3ex] -2\cdot (-1)+1\cdot 6 & -2\cdot 2 +1\cdot (-8) \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b28076f6ab18dc77a0083388046c5cd1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X = \begin{pmatrix} -\frac{3}{2} -\frac{6}{2} & 3 + 4 \\[1.3ex] 2+6 & -4-8 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7d20e85150a382ba9f11bf328b866834_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X =} \begin{pmatrix} \bm{-} \frac{\bm{9}}{\bm{2}} & \bm{7} \\[1.3ex] \bm{8} & \bm{-12} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3e7ebae094a92690d97b614b0487a4_l3.png)
Probleme mit Matrixgleichungen gelöst
Damit Sie das Konzept üben und somit gut verstehen können, hinterlassen wir Ihnen im Folgenden einige gelöste Matrixgleichungen. Sie können die Übungen ausprobieren und sehen, ob Ihnen die Lösungen gelungen sind. Vergessen Sie nicht, dass Sie uns auch alle Fragen stellen können, die in den Kommentaren auftauchen.
Übung 1
Sei
![]()
Und
![]()
die folgenden quadratischen Matrizen der Dimension 2×2:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0f40b96fc0f1047fb0c39a7d41be04ea_l3.png)
Berechnen Sie die Matrix
![]()
welches die folgende Matrixgleichung erfüllt:
![]()
Sie müssen zuerst die Matrix leeren
![]()
der Matrixgleichung:
![]()
![]()
![]()
![]()
Sobald wir die Matrix haben
![]()
Klar, operiere einfach mit den Matrizen. Wir berechnen daher zunächst die inverse Matrix von A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & -1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2fb5c4785b78010fcac56e1189338b99_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 1 & 3 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7c4d4a6bfca6d2eedde52937c8ee0917_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{1} \cdot \begin{pmatrix}0 & 1 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-695a05e4176ced4a4beaec27ce201b4a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a12ae8d0ae9ce16f04540ecd1a0ac907_l3.png)
Jetzt ersetzen wir alle Matrizen in der Gleichung, um die Matrix zu berechnen
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X= \begin{pmatrix} 0 & 1 \\[1.1ex] -1 & 3\end{pmatrix}\cdot \begin{pmatrix} 4 & 2 \\[1.1ex] -1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-92d5f580fddfc830181cde2e67013987_l3.png)
Und schließlich führen wir die Multiplikation der Matrizen durch:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \bm{3} \\[1.1ex] \bm{-7} & \bm{7}\end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-787643b41cb362e276b8f80c9211fb52_l3.png)
Übung 2
Sei
![]()
,
![]()
Und
![]()
die folgende Reihenfolge 2 Matrizen:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 3 & 6 \\[1.1ex] 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4f4f1f244d15039c64282a9fe347cee4_l3.png)
Berechnen Sie die Matrix
![]()
welches die folgende Matrixgleichung erfüllt:
![]()
Als erstes müssen wir die Matrix leeren.
![]()
der Matrixgleichung:
![]()
![]()
![]()
![]()
![]()
Sobald wir die Matrix isoliert haben
![]()
, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} -2 & 1 \\[1.1ex] 3 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-33c4a446ecdc391935728843e6a34964_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -3 \\[1.1ex] -1 & -2 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4850852b0e29a3d530b32dc1cd635499_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{3} \cdot \begin{pmatrix} -3 & -1 \\[1.1ex] -3 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b8817da5e89bc39e89bd17390cfd61c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-a5fc342354f6410cb87fa6b0ddf833a4_l3.png)
Jetzt ersetzen wir alle Matrizen in der Gleichung, um die Matrix zu berechnen
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\left(\begin{pmatrix} 6 & 4 \\[1.3ex] 3 & -2 \end{pmatrix}-\begin{pmatrix} 3 & 6 \\[1.3ex] 2 & -1 \end{pmatrix}\right)\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-79abf2abf8a29e6357f65a1b62c9a80f_l3.png)
Wir lösen die Klammern durch Subtrahieren der Matrizen:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 3 & -2 \\[1.3ex] 1 & -1 \end{pmatrix}\cdot \begin{pmatrix} -1 & -\frac{1}{3} \\[1.3ex] -1 & -\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f5141a4cb61be8db15676e185b10767f_l3.png)
Und schließlich multiplizieren wir die Matrizen:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} -3+2 & -1+\frac{4}{3} \\[1.3ex] -1+1 & -\frac{1}{3}+\frac{2}{3} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1d5482b1eb8fd6af1d6c61547b05c0bc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{ -1} & \frac{\bm{1}}{\bm{3}} \\[1.3ex] \bm{0} & \frac{\bm{1}}{\bm{3}} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-779a021183e139f0e138fbc288d4adea_l3.png)
Übung 3
Sei
![]()
,
![]()
Und
![]()
die folgenden Matrizen zweiter Ordnung:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}\qquad C = \begin{pmatrix} 6 & 4 \\[1.1ex] 22 & 14 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-6292882d305055e4e8fb287a4bc93b71_l3.png)
Finden Sie die Matrix
![]()
welches die folgende Matrixgleichung erfüllt:
![]()
Zuerst müssen wir die Matrix löschen
![]()
der Matrixgleichung:
![]()
![]()
![]()
![]()
Sobald wir die Matrix geleert haben
![]()
, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} -1 & 1 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b09ce42998b548267e70e47b135b6508_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-2a29b310de613bc1ec42a6e1452db147_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] -1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c0e0b895fed20ba908417f6ee3482ce0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 0 & 1 \\[1.1ex] 1 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c19685457cd40098cadf6eeff41405d5_l3.png)
Und wir invertieren auch Matrix B:
![Rendered by QuickLaTeX.com \displaystyle B =\begin{pmatrix} 4 & -2 \\[1.1ex] 1 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d3f5048394796b2378c8197c9c9c1cb7_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & -1 \\[1.1ex] 2 & 4 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-261eb432e305f5df596fc1dff9f183d7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \cfrac{1}{2} \cdot \begin{pmatrix} 0 & 2 \\[1.1ex] -1 & 4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-96d40ae8aa7c350c8a63d57d06b6fa6d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle B^{-1} = \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-80ee47f61b0671b42f9df06e7f384847_l3.png)
Jetzt setzen wir alle Matrizen in den Ausdruck ein, um die Matrix zu berechnen
![]()
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0 & 1 \\[1.3ex] 1 & 1 \end{pmatrix}\cdot\begin{pmatrix} 6 & 4 \\[1.3ex] 22 & 14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-de94e47503b17f761f7fcb764f4def59_l3.png)
Wir lösen zunächst die Multiplikation auf der linken Seite
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0+22 & 0+14 \\[1.3ex] 6+22 & 4+14 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ca95f4870d5be13a3f7e241e5a40934b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 22 & 14 \\[1.3ex] 28 & 18 \end{pmatrix}\cdot \begin{pmatrix} 0 & 1 \\[1.3ex] -\frac{1}{2} & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-3df7709b9d5c5f5194744d4c88d2cb66_l3.png)
Und schließlich führen wir die verbleibende Multiplikation durch:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 0-7 & 22+28 \\[1.3ex] 0-9 & 28+36 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-62d83b02b8768a7e95ee71b7782d7759_l3.png)
![Rendered by QuickLaTeX.com \displaystyle \bm{X=} \begin{pmatrix}\bm{-7} & \bm{50} \\[1.3ex] \bm{-9} & \bm{64} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4b3a393915b3c49bdf9dd9ee6ada5020_l3.png)
Übung 4
Sei
![]()
Und
![]()
die folgenden Matrizen der Dimension 3×3:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix}1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-da8b3d05ecc85eea72fd7d14c282f58c_l3.png)
Berechnen Sie die Matrix
![]()
welches die folgende Matrixgleichung erfüllt:
![]()
Zuerst löschen wir die Matrix
![]()
der Matrixgleichung:
![]()
![]()
![]()
![]()
![]()
![]()
Sobald wir die Matrix isoliert haben
![]()
, ist es notwendig, mit Matrizen zu arbeiten. Wir berechnen daher zunächst die inverse Matrix von A:
![Rendered by QuickLaTeX.com \displaystyle A =\begin{pmatrix} 1 & 0 & 1\\[1.1ex] 0 & -1 & 0 \\[1.1ex] 1 & 2 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-1a92fa898838b531bf1b51356dbbb2de_l3.png)
![]()
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix}\\[4ex] -\begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \\[4ex] \begin{vmatrix} 0 & 1\\ -1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 1\\ 0 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9cc1a5bb552d5eadacef8677265cba0a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \cfrac{1}{-1} \cdot \begin{pmatrix} -2 & 0 & 1 \\[1.1ex] 2 & 1 & -2 \\[1.1ex] 1 & 0 & -1 \end{pmatrix}^{\bm{t}}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e668ed3a6e233bed8245f99e80638633_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = -1 \cdot \begin{pmatrix} -2 & 2 & 1 \\[1.1ex] 0 & 1 & 0 \\[1.1ex] 1 & -2 & -1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeb999734b9ba4b6e9a01e788bee6649_l3.png)
![Rendered by QuickLaTeX.com \displaystyle A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f8f2379d6d616b29b78005aaafe39f29_l3.png)
Jetzt setzen wir alle Matrizen in den Ausdruck ein, um X zu berechnen:
![]()
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix}^t- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-c91b944756316c7cde33eb90743d54d6_l3.png)
Wir transponieren Matrix B:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \left(\begin{pmatrix} 1 & 2 & -3 \\[1.1ex] -1 & 3 & 1 \\[1.1ex] 0 & -2 & -1 \end{pmatrix}- \begin{pmatrix} 1 & -1 & 0 \\[1.1ex] 2 & 3 & -2 \\[1.1ex] -3 & 1 & -1 \end{pmatrix} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-3a81f0c3d7367d756d53221e9c56d1e3_l3.png)
Wir lösen die Klammern durch Subtrahieren von Matrizen:
![Rendered by QuickLaTeX.com \displaystyle X=\begin{pmatrix} 2 & -2 & -1 \\[1.1ex] 0 & -1 & 0 \\[1.1ex] -1 & 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 0 & 3 & -3 \\[1.1ex] -3 & 0 & 3 \\[1.1ex] 3 & -3 & 0 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5f822e84288230368a5c0918c79398bf_l3.png)
Und schließlich führen wir die Matrixmultiplikation durch:
![Rendered by QuickLaTeX.com \displaystyle \bm{X=}\begin{pmatrix} \bm{3} & \bm{9} & \bm{-12} \\[1.1ex] \bm{3} & \bm{0} & \bm{-3} \\[1.1ex] \bm{-3} & \bm{-6} & \bm{9} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-552e3809229102041ddf02a78badfea0_l3.png)