在本节中,我们将了解它们是什么以及如何计算补小数、伴随矩阵和伴随矩阵。另外,你还会找到例子,让你完全理解,还有一步一步解决的练习,让你可以练习。
什么是补充未成年人?
它被称为元素的次补。
![]()
删除该行获得的行列式
![]()
和专栏
![]()
的矩阵。
如何计算元素的补余数?
让我们通过一些示例来看看如何计算元素的补余数:
示例1:
计算以下 3 × 3 方阵的 1 的次补:
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
1的补余数是消去1所在行和列后剩下的矩阵的行列式。即删除第一行和第二列:
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} \cellcolor[HTML]{F5B7B1}6 & \cellcolor[HTML]{F5B7B1}1 & \cellcolor[HTML]{F5B7B1}7 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 3 & \cellcolor[HTML]{F5B7B1}2 & 0 \\ & \cellcolor[HTML]{F5B7B1} & \\[-2ex] 5 & \cellcolor[HTML]{F5B7B1}8 & 4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-cb0021e61d4a3779378734771071bdfa_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 1} = \begin{vmatrix} 3 & 0 \\[1.1ex] 5 & 4 \end{vmatrix} = \bm{12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-7a38c134fa8e592ff15956701ce4521c_l3.png)
示例2:
这次我们将计算与之前相同的矩阵的0 的补余数:
![Rendered by QuickLaTeX.com \displaystyle A = \left( \begin{array}{ccc} 6 & 1 & 7 \\[1.1ex] 3 & 2 & 0 \\[1.1ex] 5 & 8 & 4 \end{array} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-0a9db280911827ab5d64507cfe71aed4_l3.png)
0 的补余数是矩阵的行列式,通过删除 0 所在的行和列:
![Rendered by QuickLaTeX.com \left( \begin{tabular}{ccc} 6 & 1 & \cellcolor[HTML]{F5B7B1}7 \\ & & \cellcolor[HTML]{F5B7B1} \\[-2ex] \cellcolor[HTML]{F5B7B1} 3 & \cellcolor[HTML]{F5B7B1}2 & \cellcolor[HTML]{F5B7B1}0 \\ & &\cellcolor[HTML]{F5B7B1} \\[-2ex] 5 & 8 & \cellcolor[HTML]{F5B7B1}4 \end{tabular} \right)](https://mathority.org/wp-content/ql-cache/quicklatex.com-eeeb42496216ad8689d1a70807b56644_l3.png)
![Rendered by QuickLaTeX.com \text{Menor complementario de 0} = \begin{vmatrix} 6 & 1 \\[1.1ex] 5 & 8 \end{vmatrix} = \bm{43}](https://mathority.org/wp-content/ql-cache/quicklatex.com-bd1eff11f2081d56b20c97203fc053c0_l3.png)
为补充未成年人解决的练习
练习1
计算以下 3×3 矩阵的 3 的最小补:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 5 & 1 & 2 \\[1.1ex] 3 & 4 & 7 \\[1.1ex] -1 & 6 & 7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-16dac836fa9d63465e46dd35e2f36249_l3.png)
3 的补余数是删除 3 所在的行和列后剩下的矩阵的行列式:
![Rendered by QuickLaTeX.com \text{Menor complementario de 3} = \begin{vmatrix} 1 & 2 \\[1.1ex] 6 & 7 \end{vmatrix} = \bm{-5}](https://mathority.org/wp-content/ql-cache/quicklatex.com-23b957e07aa004db36332997e906169f_l3.png)
练习2
求以下 3 阶矩阵的 5 的补余数:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} -2 & 4 & -2 \\[1.1ex] 1 & 3 & 4 \\[1.1ex] 5 & 8 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-870e864969258f55a07ecd82c68c3132_l3.png)
5 的补余数是我们通过删除 5 所在的行和列得到的矩阵的行列式:
![Rendered by QuickLaTeX.com \text{Menor complementario de 5} = \begin{vmatrix} 4 & -2 \\[1.1ex] 3 & 4 \end{vmatrix} = \bm{22}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f9fc980c8adf2b46e6bcfea0ef69737a_l3.png)
练习3
计算以下 4×4 矩阵的 6 的次补:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 1 & 3 & 4 \\[1.1ex] 2 & 6 & -1 & 8 \\[1.1ex] 3 & 9 & -1 & 4 \\[1.1ex] 5 & 4 & 1 & 3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c61e20d710e35ab2b27c94ca720e01a9_l3.png)
6 的补余数是矩阵的行列式,该矩阵在删除 6 所在的行和列后剩下:
![Rendered by QuickLaTeX.com \text{Menor complementario de 6} = \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5& 1 & 3 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-60150a09c3023b5f1e147bf437df719c_l3.png)
我们用 Sarrus 规则求解行列式:
![Rendered by QuickLaTeX.com \displaystyle \begin{vmatrix} 1 & 3 & 4 \\[1.1ex] 3 & -1 & 4 \\[1.1ex] 5 & 1 & 3 \end{vmatrix}=-3+60+12+20-4-27 = \bm{58}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f331c9c3723df34235d8f172f5f41750_l3.png)
什么是数组元素的伴随?
的副手
![]()
,即行项目
![]()
和专栏
![]()
,通过以下公式获得:
![]()
如何获取数组元素的伴随?
我们通过几个例子来看看元素的伴随数是如何计算的:
示例1:
计算以下 3 阶矩阵的 4 的伴随:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
4 位于第 2行第 1 列,因此在本例中
![]()
和
![]()
![]()
而且,正如我们之前看到的, 4 的次补是矩阵的行列式,消除了 4 所在的行和列。所以:
![Rendered by QuickLaTeX.com \text{Adjunto de} 4 = \displaystyle(-1)^{2+1} \bm{\cdot} \begin{vmatrix} 2 & 3 \\[1.1ex] 8 & 9 \end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b1cdd0dac0607a955fcfb19849c05276_l3.png)
现在我们求解行列式并找到 4 的伴随:
![]()
请记住,负数的偶数指数为正数。因此,如果将-1提高到偶数,它将变为正值。
![]()
另一方面,如果负数升到奇数指数,则它是负数。因此,如果将-1提高到奇数,则它始终为负数。
![]()
示例2:
我们将找到与之前相同的矩阵的 5 的副:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 5 = \displaystyle(-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 7 & 9 \end{vmatrix} = 1 \cdot (-12) = \bm{-12}](https://mathority.org/wp-content/ql-cache/quicklatex.com-f3e47d30b12e053b3f5950033640b662_l3.png)
示例3:
让我们制作同一个矩阵的 3 的副词:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\[1.1ex] 4 & 5 & 6 \\[1.1ex] 7 & 8 & 9 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0acdd22355294e7c19583b1538c9070d_l3.png)
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de} 3 \displaystyle = (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 4 & 5 \\[1.1ex] 7 & 8 \end{vmatrix} = 1 \cdot (-3) = \bm{-3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-954d6137c753a58e91682334addc5345_l3.png)
元素的伴随用于计算行列式(稍后我们将看到),并用于计算伴随矩阵(这就是我们现在将看到的)。
为助理解决了练习
练习1
计算以下 3×3 矩阵的 2 的伴随:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 & 1 \\[1.1ex] -1 & -3 & 5 \\[1.1ex] 5 & 3 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-340d5ef9265b33c7a6ad4ac7d72633f5_l3.png)
要获得 2 的伴随结果,只需应用元素的伴随公式:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 2} \displaystyle = (-1)^{1+1} \bm{\cdot} \begin{vmatrix} -3 & 5 \\[1.1ex] 3 & 1 \end{vmatrix} = 1 \cdot (-18) = \bm{-18}](https://mathority.org/wp-content/ql-cache/quicklatex.com-74e69b36278f7b0518a20be2e02aea4c_l3.png)
练习2
求以下 3 阶矩阵的 4 的伴随:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 3 & 1 & -1 \\[1.1ex] 2 & 9 & 4 \\[1.1ex] 6 & 5 & -3 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e21733cd834cdbeed5ca8fc433068ccf_l3.png)
要获得 4 的副词,我们必须使用元素的副词公式:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 4} \displaystyle = (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 3 & 1 \\[1.1ex] 6 & 5 \end{vmatrix} = -1 \cdot 9 = \bm{-9}](https://mathority.org/wp-content/ql-cache/quicklatex.com-c4a2228588aeef08594e7f3cc93c53ec_l3.png)
练习3
求以下 4×4 矩阵中 7 个的副矩阵:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 2 & 5 & -2 \\[1.1ex] 3 & 1 & -3 & 3 \\[1.1ex] 2 & -1 & 4 & 0 \\[1.1ex] 2 & 7 & 9 & -4 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-64b3cf6b9f34fce5f66d24502f2434a1_l3.png)
为了生成 7 的附加值,我们应用元素附加值的公式:
![]()
![Rendered by QuickLaTeX.com \text{Adjunto de 7} \displaystyle = (-1)^{4+2} \bm{\cdot} \begin{vmatrix} 1 & 5 & -2 \\[1.1ex] 3 & -3 & 3 \\[1.1ex] 2 & 4 & 0\end{vmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-54f5200bb9a57df8b0aa73271ec26c7f_l3.png)
我们应用 Sarrus 规则来求解三阶行列式:
![]()
![]()
附加矩阵是什么?
附加数组是其中所有元素都已被其副元素替换的数组。
如何计算伴随矩阵?
为了计算代表矩阵,我们需要将矩阵的所有元素替换为其代表。
我们通过一个例子看看连接矩阵是如何制作的:
例子:
计算以下维度为 2×2 的方阵的伴随矩阵:
![Rendered by QuickLaTeX.com \displaystyle A = \begin{pmatrix} 4 & -1 \\[1.1ex] 3 & 2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-e1d84d025062b24cb6a7ef021cb55de1_l3.png)
要计算伴随矩阵,我们必须计算矩阵 的每个元素的伴随。因此,我们首先用以下公式求解所有元素的伴随:
![]()
![]()
![]()
![]()
![]()
现在我们只需要替换数组中的每个元素
![]()
由其副手求出副手矩阵
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{2} & \bm{-3} \\[1.1ex] \bm{1} & \bm{4} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-4c4c2583218c84e184a1911972dca72b_l3.png)
这样就找到了一个矩阵的副。但您可能想知道所有这些计算的目的是什么?矩阵连接的用途之一是计算矩阵的逆。事实上,求逆矩阵最常用的方法就是伴随矩阵法。
已解决的伴随矩阵问题
练习1
计算以下 2×2 方阵的伴随矩阵:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 2 & 3 \\[1.1ex] -4 & 1 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b5fbfc1c22345724f35d7208214f8592_l3.png)
为了计算伴随矩阵,我们必须计算矩阵每个元素的伴随。因此,我们首先用以下公式求解所有元素的伴随:
![]()
![]()
![]()
![]()
现在我们只需要替换数组中的每个元素
![]()
由其副手求出副手矩阵
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{1} & \bm{4} \\[1.1ex] \bm{-3} & \bm{2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-5d3fdee2506136365c141a81596f1d22_l3.png)
练习2
求以下二阶矩阵的伴随矩阵:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 6 & -2 \\[1.1ex] 3 & -7 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-b95133fbf999cb6585b3a32f4b1b906b_l3.png)
为了计算伴随矩阵,我们必须计算矩阵每个元素的伴随。因此,我们首先用以下公式求解所有元素的伴随:
![]()
![]()
![]()
![]()
现在我们只需要替换数组中的每个元素
![]()
由其副手求出副手矩阵
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-7} & \bm{-3} \\[1.1ex] \bm{2} & \bm{6} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-604112d6e7d95ca76dd5266dc2eceb86_l3.png)
练习3
计算以下 3×3 矩阵的伴随矩阵:
![Rendered by QuickLaTeX.com \displaystyle \begin{pmatrix} 1 & 3 & -1 \\[1.1ex] 2 & 4 & 0 \\[1.1ex] 5 & 0 & -2 \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0072b68810f2662ae9f4ec3d11902f97_l3.png)
为了计算伴随矩阵,我们必须计算矩阵每个元素的伴随。因此,我们首先用以下公式求解所有元素的伴随:
![Rendered by QuickLaTeX.com \text{Adjunto de 1} = \displaystyle (-1)^{1+1} \bm{\cdot} \begin{vmatrix} 4 & 0 \\[1.1ex] 0 & -2\end{vmatrix} = 1 \cdot (-8) = \bm{-8}](https://mathority.org/wp-content/ql-cache/quicklatex.com-68e2bee7e07b5749033cdf67d90684a6_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 3} = \displaystyle (-1)^{1+2} \bm{\cdot} \begin{vmatrix} 2 & 0 \\[1.1ex] 5 & -2\end{vmatrix} = -1 \cdot (-4) = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-88120e3a6fa0e6ba43c654ce7884eb41_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -1} = \displaystyle (-1)^{1+3} \bm{\cdot} \begin{vmatrix} 2 & 4 \\[1.1ex] 5 & 0\end{vmatrix} = 1 \cdot (-20) = \bm{-20}](https://mathority.org/wp-content/ql-cache/quicklatex.com-49c170f202956d9571fcce88cd389889_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 2} = \displaystyle (-1)^{2+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 0 & -2\end{vmatrix} = -1 \cdot (-6) = \bm{6}](https://mathority.org/wp-content/ql-cache/quicklatex.com-9dd9f81ddb6bd58f2a4e1241c3fbfdb3_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 4} = \displaystyle (-1)^{2+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 5 & -2\end{vmatrix} = 1 \cdot 3 = \bm{3}](https://mathority.org/wp-content/ql-cache/quicklatex.com-ee11d10a5ef1719e3eee0d1de8e2fd1e_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{2+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 5 & 0 \end{vmatrix} = -1 \cdot (-15) = \bm{15}](https://mathority.org/wp-content/ql-cache/quicklatex.com-327cba2dd78055703b66b887083d3a50_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 5} = \displaystyle (-1)^{3+1} \bm{\cdot} \begin{vmatrix} 3 & -1 \\[1.1ex] 4 & 0 \end{vmatrix} = 1 \cdot 4 = \bm{4}](https://mathority.org/wp-content/ql-cache/quicklatex.com-d5df97c790e24f1257c7d1073c4e2af8_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de 0} = \displaystyle (-1)^{3+2} \bm{\cdot} \begin{vmatrix} 1 & -1 \\[1.1ex] 2 & 0\end{vmatrix} = -1 \cdot 2 = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-0d0cd9b3ea07312942362d52f07c04bc_l3.png)
![Rendered by QuickLaTeX.com \text{Adjunto de -2} = \displaystyle (-1)^{3+3} \bm{\cdot} \begin{vmatrix} 1 & 3 \\[1.1ex] 2 & 4 \end{vmatrix} = 1 \cdot (-2) = \bm{-2}](https://mathority.org/wp-content/ql-cache/quicklatex.com-00f3983f64257be282584209b8f2d842_l3.png)
现在我们只需要替换数组中的每个元素
![]()
由其副手求出副手矩阵
![]()
![Rendered by QuickLaTeX.com \text{Adj} (A) = \begin{pmatrix} \bm{-8} & \bm{4} & \bm{-20} \\[1.1ex] \bm{6} & \bm{3} & \bm{15} \\[1.1ex] \bm{4} & \bm{-2} & \bm{-2} \end{pmatrix}](https://mathority.org/wp-content/ql-cache/quicklatex.com-01e49ffda72034d74b18ecdd37d1e3b6_l3.png)