矩阵乘法

在本页中,我们将了解如何对尺寸为 2×2、3×3、4×4 等的矩阵进行乘法。我们通过一个例子一步步解释矩阵乘法的过程,然后你会找到已解决的练习,以便你也可以练习。最后,您将了解两个矩阵何时不能相乘以及该矩阵运算的所有属性。

如何将两个矩阵相乘?

让我们通过一个例子来看看执行两个矩阵相乘的过程:

如何将两个维度为 2x2 的矩阵相乘以及矩阵运算的示例

要计算矩阵乘法,左矩阵的必须乘以右矩阵的

所以首先我们需要将第一行乘以第一列。为此,我们将第一行中的每个元素乘以第一列中的每个元素,然后将结果相加。因此,所有这些都将是结果数组第一行的第一个元素。看一下流程:

如何解决 2x2 矩阵乘法、矩阵运算

1 3 + 2 4 = 3 + 8 = 11。所以:

现在我们需要将第一行乘以第二列。因此,我们重复该过程:将第一行的每个元素与第二列的每个元素一一相乘,然后将结果相加。所有这些都将是结果数组第一行的第二个元素:

1 × 5 + 2 × 1 = 5 + 2 = 7。所以:

一旦我们填充了结果矩阵的第一行,我们就移动到第二行。因此,我们通过重复以下过程将第二行乘以第一列:将第二行的每个元素乘以第一列的每个元素,然后将结果相加:

-3 × 3 + 0 × 4 = -9 + 0 = -9。然而:

最后,我们将第二行乘以第二列。始终使用相同的过程:我们将第二行的每个元素与第二列的每个元素一一相乘,然后将结果相加:

-3 × 5 + 0 × 1 = -15 + 0 = -15。然而:

到这里两个矩阵的乘法就结束了。正如您所看到的,您需要将行乘以列,始终重复相同的过程:行的每个元素乘以列的每个元素一一相乘,然后将结果相加。

解决矩阵乘法练习

练习1

求解以下矩阵乘积:

练习逐步解决 2x2 矩阵的乘积、矩阵运算

它是 2 阶矩阵的乘积:

\displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4  \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5  \end{pmatrix}

要求解矩阵乘积,必须将左侧矩阵的行乘以右侧矩阵的列。

所以我们首先将第一行乘以第一列。为此,我们将第一行中的每个元素乘以第一列中的每个元素,然后将结果相加。所有这些都将是结果数组第一行的第一个元素:

\displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4  \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5  \end{pmatrix}  = \begin{pmatrix} 1\cdot 3 +2 \cdot 1 & \\[1.1ex] & \end{pmatrix} = \begin{pmatrix} 5 & \\[1.1ex] & \end{pmatrix}

现在让我们将第一行乘以第二列,以获得结果矩阵第一行的第二个元素:

\displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4  \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5  \end{pmatrix}  = \begin{pmatrix} -1 & 1\cdot (-2) +2 \cdot 5 \\[1.1ex] & \end{pmatrix} = \begin{pmatrix}5 & 8 \\[1.1ex] & \end{pmatrix}

我们转到第二行,因此我们将第二行乘以第一列:

\displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4  \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5  \end{pmatrix} = \begin{pmatrix} -1 & 8 \\[1.1ex] 3\cdot 3 +4 \cdot 1 & \end{pmatrix}= \begin{pmatrix}5 & 8 \\[1.1ex] 13 & \end{pmatrix}

最后,我们将第二行乘以第二列,以计算表的最后一个元素:

\displaystyle \begin{pmatrix} 1 & 2 \\[1.1ex] 3 & 4  \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\[1.1ex] 1 & 5  \end{pmatrix}= \begin{pmatrix} -1 & 8 \\[1.1ex]1 & 3\cdot (-2) +4 \cdot 5 \end{pmatrix}=\begin{pmatrix} 5 & 8 \\[1.1ex] 13 & 14 \end{pmatrix}

所以矩阵乘法的结果是:

\displaystyle \begin{pmatrix} \bm{5} & \bm{8} \\[1.1ex]\bm{13} & \bm{14} \end{pmatrix}

练习2

求以下 2×2 方阵乘法的结果:

逐步解决 2x2 矩阵乘法、矩阵运算的练习

它是 2×2 维矩阵的乘积。

要解决乘法问题,必须将左侧矩阵的行乘以右侧矩阵的列:

\displaystyle \begin{aligned} \begin{pmatrix} 4 & -1  \\[1.1ex] -2 & 3  \end{pmatrix} \cdot \begin{pmatrix} -2 & 5 \\[1.1ex] 6 & -3  \end{pmatrix}  & = \begin{pmatrix} 4\cdot (-2)+(-1) \cdot 6 &  4\cdot 5+(-1) \cdot (-3)  \\[1.1ex](-2)\cdot (-2)+3 \cdot 6 & (-2)\cdot 5+3 \cdot (-3)\end{pmatrix} \\[2ex] & =\begin{pmatrix} \bm{-14} & \bm{23} \\[1.1ex]\bm{22} & \bm{-19} \end{pmatrix} \end{aligned}

练习3

计算以下 3×3 矩阵乘法:

练习逐步解决 3x3 矩阵的乘法、矩阵运算

要执行 3×3 矩阵乘法,必须将左侧矩阵的行乘以右侧矩阵的列:

\displaystyle \begin{array}{l} \begin{pmatrix} 1 & 2 & 0 \\[1.1ex] 3 & 2 & -1 \\[1.1ex] 5 & 1 & -2  \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 & 0 \\[1.1ex] 1 & 0 & -2 \\[1.1ex] -1 & 2 & 1 \end{pmatrix} = \\[7.5ex] =\begin{pmatrix} 1 \cdot 3+2 \cdot 1+ 0 \cdot (-1) & 1 \cdot 4+2 \cdot 0+ 0 \cdot 2 & 1 \cdot 0+2 \cdot (-2)+ 0 \cdot 1 \\[1.1ex] 3 \cdot 3+2 \cdot 1+ (-1) \cdot (-1) & 3 \cdot 4+2 \cdot 0+ (-1) \cdot 2 & 3 \cdot 0+2 \cdot (-2)+ (-1) \cdot 1 \\[1.1ex] 5 \cdot 3+1 \cdot 1+ (-2) \cdot (-1) & 5 \cdot 4+1 \cdot 0+ (-2) \cdot 2 & 5 \cdot 0+1 \cdot (-2)+ (-2) \cdot 1 \end{pmatrix} = \\[7.5ex]  =\begin{pmatrix} \bm{5} & \bm{4} & \bm{-4} \\[1.1ex] \bm{12} & \bm{10} & \bm{-5} \\[1.1ex] \bm{18} & \bm{16} & \bm{-4} \end{pmatrix}\end{array}

练习4

给定矩阵

A

:

\displaystyle A= \begin{pmatrix} 3 & 1 & -2 \\[1.1ex] 4 & 2 & -1   \end{pmatrix}

计算:

\displaystyle 2A\cdot A^t

我们首先计算转置矩阵

A

做乘法。为了制作转置矩阵,我们需要将行更改为列。也就是说,矩阵的第一行成为矩阵的第一列,矩阵的第二行成为矩阵的第二列。然而:

\displaystyle A^t= \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2  \\[1.1ex] -2 & -1 \end{pmatrix}

因此,矩阵运算仍然是:

\displaystyle 2A\cdot A^t = 2 \begin{pmatrix} 3 & 1 & -2 \\[1.1ex] 4 & 2 & -1   \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2  \\[1.1ex] -2 & -1 \end{pmatrix}

现在我们可以进行计算了。我们首先计算

2A

(虽然我们也可以先计算

A \cdot A^t

):

\displaystyle  \begin{pmatrix} 2 \cdot 3 & 2 \cdot 1 & 2 \cdot (-2) \\[1.1ex] 2 \cdot 4 & 2 \cdot 2 & 2 \cdot (-1) \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2  \\[1.1ex] -2 & -1 \end{pmatrix} =

\displaystyle  =\begin{pmatrix} 6 & 2 & -4 \\[1.1ex] 8 & 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\[1.1ex] 1 & 2  \\[1.1ex] -2 & -1 \end{pmatrix}

最后,我们求解矩阵的乘积:

\displaystyle  \begin{pmatrix} 6 \cdot 3 +2 \cdot 1 + (-4) \cdot (-2) & 6 \cdot 4 +2 \cdot 2 + (-4) \cdot (-1) \\[1.1ex] 8 \cdot 3 +4 \cdot 1 + (-2) \cdot (-2) & 8 \cdot 4 +4 \cdot 2 + (-2) \cdot (-1) \end{pmatrix} =

\displaystyle = \begin{pmatrix} \bm{28} & \bm{32} \\[1.1ex]\bm{32} & \bm{42} \end{pmatrix}

练习5

考虑以下矩阵:

\displaystyle A=\begin{pmatrix} 2 & 4  \\[1.1ex] -3 & 5 \end{pmatrix} \qquad B=\begin{pmatrix} -1 & -2  \\[1.1ex] 3 & -3 \end{pmatrix}

计算:

\displaystyle A\cdot B - B \cdot A

这是一个将减法与 2 阶矩阵乘法相结合的运算:

\displaystyle A\cdot B - B \cdot A= \begin{pmatrix} 2 & 4  \\[1.1ex] -3 & 5 \end{pmatrix}\cdot \begin{pmatrix} -1 & -2  \\[1.1ex] 3 & -3 \end{pmatrix} - \begin{pmatrix} -1 & -2  \\[1.1ex] 3 & -3 \end{pmatrix}  \cdot \begin{pmatrix} 2 & 4  \\[1.1ex] -3 & 5 \end{pmatrix}

我们首先计算左边的乘法:

\displaystyle \begin{pmatrix} 2\cdot (-1) + 4 \cdot 3 & 2\cdot (-2) + 4 \cdot (-3) \\[1.1ex] (-3)\cdot (-1) + 5 \cdot 3 & (-3)\cdot (-2) + 5 \cdot (-3)  \end{pmatrix} - \begin{pmatrix} -1 & -2  \\[1.1ex] 3 & -3 \end{pmatrix}  \cdot \begin{pmatrix} 2 & 4  \\[1.1ex] -3 & 5 \end{pmatrix} =

\displaystyle= \begin{pmatrix} 10 & -16  \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} -1 & -2  \\[1.1ex] 3 & -3 \end{pmatrix}  \cdot \begin{pmatrix} 2 & 4  \\[1.1ex] -3 & 5 \end{pmatrix}

现在我们解右边的乘法:

\displaystyle \begin{pmatrix} 10 & -16  \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} -1 \cdot 2 +(-2) \cdot (-3) &  -1 \cdot 4 +(-2) \cdot 5  \\[1.1ex]3 \cdot 2 +(-3) \cdot (-3) &  3 \cdot 4 +(-3) \cdot 5  \end{pmatrix} =

\displaystyle =\begin{pmatrix} 10 & -16  \\[1.1ex] 18 & -9 \end{pmatrix} - \begin{pmatrix} 4 &-14  \\[1.1ex]15 & -3  \end{pmatrix}

最后我们减去矩阵:

\displaystyle \begin{pmatrix} 10-4 & -16 -(-14) \\[1.1ex] 18-15 & -9-(-3) \end{pmatrix} =

\displaystyle =\begin{pmatrix} \bm{6} & \bm{-2} \\[1.1ex] \bm{3} & \bm{-6} \end{pmatrix}

什么时候不能将两个矩阵相乘?

并非所有矩阵都可以相乘。要将两个矩阵相乘,第一个矩阵中的列数必须与第二个矩阵中的行数匹配。

例如,由于第一个矩阵有 3 列,第二个矩阵有 2 行,因此无法执行以下乘法:

\displaystyle\begin{pmatrix} 1 & 3 & -2 \\[1.1ex] 4 & 0 & 5 \end{pmatrix} \cdot  \begin{pmatrix} 2 & 1  \\[1.1ex] 3 & -1  \end{pmatrix}  \ \longleftarrow \ \color{red} \bm{\times}

但如果我们颠倒顺序,它们就可以成倍增加。因为第一个矩阵有两列,第二个矩阵有两行:

\displaystyle \begin{aligned} \begin{pmatrix} 2 & 1  \\[1.1ex] 3 & -1  \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & -2 \\[1.1ex] 4 & 0 & 5  \end{pmatrix}  & = \begin{pmatrix} 2\cdot 1 + 1 \cdot 4 & 2\cdot 3 + 1 \cdot 0 & 2\cdot (-2) + 1 \cdot 5  \\[1.1ex] 3\cdot 1 + (-1) \cdot 4 & 3\cdot 3 + (-1) \cdot 0 & 3\cdot (-2) + (-1) \cdot 5   \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{6} & \bm{6} & \bm{1}  \\[1.1ex]\bm{-1} & \bm{9} & \bm{-11}   \end{pmatrix}   \end{aligned}

矩阵乘法性质

此类矩阵运算具有以下特点:

  • 矩阵乘法是结合的:

\displaystyle \left( A \cdot B \right) \cdot C = A \cdot \left( B \cdot C \right)

  • 矩阵乘法还具有分配性质:

\displaystyle A\cdot \left(B+C\right) = A\cdot B + A \cdot C

  • 矩阵的乘积不可交换:

\displaystyle A \cdot B \neq B \cdot A

例如,以下矩阵乘法给出结果:

\displaystyle \begin{aligned} \begin{pmatrix} 1 & -1  \\[1.1ex] 2 & 3  \end{pmatrix} \cdot \begin{pmatrix} -2 & 5  \\[1.1ex] 0 & 1   \end{pmatrix}  & = \begin{pmatrix} 1\cdot (-2) + (-1) \cdot 0 & 1\cdot 5 + (-1) \cdot 1   \\[1.1ex] 2\cdot (-2) + 3 \cdot 0 &  2\cdot 5 + 3 \cdot 1    \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{-2} & \bm{4} \\[1.1ex] \bm{-4} &  \bm{13} \end{pmatrix}\end{aligned}

但如果我们颠倒矩阵相乘的顺序,乘积的结果会有所不同:

\displaystyle \begin{aligned}\begin{pmatrix} -2 & 5  \\[1.1ex] 0 & 1   \end{pmatrix} \cdot  \begin{pmatrix} 1 & -1  \\[1.1ex] 2 & 3  \end{pmatrix} & = \begin{pmatrix} -2 \cdot 1 + 5\cdot 2 &  -2 \cdot (-1) + 5\cdot 3  \\[1.1ex] 0 \cdot 1 + 1\cdot 2 &  0 \cdot (-1) + 1\cdot 3   \end{pmatrix} \\[2ex] & = \begin{pmatrix} \bm{8} &  \bm{17}  \\[1.1ex] \bm{2} &  \bm{3} \end{pmatrix}\end{aligned}

  • 此外,任何矩阵乘以单位矩阵都会得到相同的矩阵。这称为乘法恒等性质:

\displaystyle A \cdot I=A

\displaystyle I \cdot A=A

例如:

\displaystyle  \begin{pmatrix} 2 & 7  \\[1.1ex] -6 & 5  \end{pmatrix} \cdot \begin{pmatrix} 1 & 0  \\[1.1ex] 0 & 1 \end{pmatrix} = \begin{pmatrix} \bm{2} & \bm{7}  \\[1.1ex] \bm{-6} & \bm{5}  \end{pmatrix}

  • 最后,正如您可能已经猜到的那样,任何矩阵乘以零矩阵都等于零矩阵。这称为零的乘法性质:

\displaystyle A \cdot 0=0

\displaystyle 0\cdot A=0

例如:

\displaystyle  \begin{pmatrix} 6 & -4  \\[1.1ex] 3 & 8  \end{pmatrix} \cdot \begin{pmatrix} 0 & 0  \\[1.1ex] 0 & 0 \end{pmatrix} = \begin{pmatrix} \bm{0} & \bm{0}  \\[1.1ex] \bm{0} & \bm{0}\end{pmatrix}

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注

Scroll to Top